123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- /**
- * @author yomboprime https://github.com/yomboprime
- *
- * @fileoverview This class can be used to subdivide a convex Geometry object into pieces.
- *
- * Usage:
- *
- * Use the function prepareBreakableObject to prepare a Mesh object to be broken.
- *
- * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane)
- *
- * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them.
- *
- * Requisites for the object:
- *
- * - Mesh object must have a Geometry (not BufferGeometry) and a Material
- *
- * - The Geometry must be convex (this is not tested in the library). You can create convex
- * Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives
- * can also be used.
- *
- * Note: This lib adds member variables to object's userData member and to its vertices.
- * (see prepareBreakableObject function)
- * Use with caution and read the code when using with other libs.
- *
- * @param {double} minSizeForBreak Min size a debris can have to break.
- * @param {double} smallDelta Max distance to consider that a point belongs to a plane.
- *
- */
- THREE.ConvexObjectBreaker = function( minSizeForBreak, smallDelta ) {
- this.minSizeForBreak = minSizeForBreak || 1.4;
- this.smallDelta = smallDelta || 0.0001;
- this.tempLine1 = new THREE.Line3();
- this.tempPlane1 = new THREE.Plane();
- this.tempPlane2 = new THREE.Plane();
- this.tempCM1 = new THREE.Vector3();
- this.tempCM2 = new THREE.Vector3();
- this.tempVector3 = new THREE.Vector3();
- this.tempVector3_2 = new THREE.Vector3();
- this.tempVector3_3 = new THREE.Vector3();
- this.tempResultObjects = { object1: null, object2: null };
- this.segments = [];
- var n = 30 * 30;
- for ( var i = 0; i < n; i++ ) {
- this.segments[ i ] = false;
- }
- };
- THREE.ConvexObjectBreaker.prototype = {
- constructor: THREE.ConvexObjectBreaker,
- prepareBreakableObject: function( object, mass, velocity, angularVelocity, breakable ) {
- // object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex.
- // Its material property is propagated to its children (sub-pieces)
- // mass must be > 0
- // Create vertices mark
- var vertices = object.geometry.vertices;
- for ( var i = 0, il = vertices.length; i < il; i++ ) {
- vertices[ i ].mark = 0;
- }
- var userData = object.userData;
- userData.mass = mass;
- userData.velocity = velocity.clone();
- userData.angularVelocity = angularVelocity.clone();
- userData.breakable = breakable;
- },
- /*
- * @param {int} maxRadialIterations Iterations for radial cuts.
- * @param {int} maxRandomIterations Max random iterations for not-radial cuts
- * @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision.
- *
- * Returns the array of pieces
- */
- subdivideByImpact: function( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision ) {
- var debris = [];
- var tempPlane1 = this.tempPlane1;
- var tempPlane2 = this.tempPlane2;
- this.tempVector3.addVectors( pointOfImpact, normal );
- tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 );
- var maxTotalIterations = maxRandomIterations + maxRadialIterations;
- var scope = this;
- function subdivideRadial( subObject, startAngle, endAngle, numIterations ) {
- if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) {
- debris.push( subObject );
- return;
-
- }
-
- var angle = Math.PI;
- if ( numIterations === 0 ) {
- tempPlane2.normal.copy( tempPlane1.normal );
- tempPlane2.constant = tempPlane1.constant;
- }
- else {
- if ( numIterations <= maxRadialIterations ) {
-
- angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle;
- // Rotate tempPlane2 at impact point around normal axis and the angle
- scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact );
- tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 );
- }
- else {
- angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI;
- // Rotate tempPlane2 at object position around normal axis and the angle
- scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position );
- scope.tempVector3_3.copy( normal ).add( subObject.position );
- tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 );
- }
- }
- // Perform the cut
- scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects );
- var obj1 = scope.tempResultObjects.object1;
- var obj2 = scope.tempResultObjects.object2;
- if ( obj1 ) {
- subdivideRadial( obj1, startAngle, angle, numIterations + 1 );
- }
- if ( obj2 ) {
- subdivideRadial( obj2, angle, endAngle, numIterations + 1 );
- }
- }
- subdivideRadial( object, 0, 2 * Math.PI, 0 );
- return debris;
- },
- cutByPlane: function( object, plane, output ) {
- // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut.
- // object2 can be null if the plane doesn't cut the object.
- // object1 can be null only in case of internal error
- // Returned value is number of pieces, 0 for error.
- var geometry = object.geometry;
- var points = geometry.vertices;
- var faces = geometry.faces;
- var numPoints = points.length;
- var points1 = [];
- var points2 = [];
- var delta = this.smallDelta;
- // Reset vertices mark
- for ( var i = 0; i < numPoints; i++ ) {
- points[ i ].mark = 0;
- }
- // Reset segments mark
- var numPointPairs = numPoints * numPoints;
- for ( var i = 0; i < numPointPairs; i++ ) {
- this.segments[ i ] = false;
- }
- // Iterate through the faces to mark edges shared by coplanar faces
- for ( var i = 0, il = faces.length - 1; i < il; i++ ) {
- var face1 = faces[ i ];
- for ( var j = i + 1, jl = faces.length; j < jl; j++ ) {
- var face2 = faces[ j ];
- var coplanar = 1 - face1.normal.dot( face2.normal ) < delta;
- if ( coplanar ) {
- var a1 = face1.a;
- var b1 = face1.b;
- var c1 = face1.c;
- var a2 = face2.a;
- var b2 = face2.b;
- var c2 = face2.c;
- if ( a1 === a2 || a1 === b2 || a1 === c2 ) {
- if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
- this.segments[ a1 * numPoints + b1 ] = true;
- this.segments[ b1 * numPoints + a1 ] = true;
- }
- else {
- this.segments[ c1 * numPoints + a1 ] = true;
- this.segments[ a1 * numPoints + c1 ] = true;
- }
- }
- else if ( b1 === a2 || b1 === b2 || b1 === c2 ) {
- this.segments[ c1 * numPoints + b1 ] = true;
- this.segments[ b1 * numPoints + c1 ] = true;
- }
- }
- }
- }
- // Transform the plane to object local space
- var localPlane = this.tempPlane1;
- object.updateMatrix();
- THREE.ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane );
- // Iterate through the faces adding points to both pieces
- for ( var i = 0, il = faces.length; i < il; i ++ ) {
- var face = faces[ i ];
- for ( var segment = 0; segment < 3; segment++ ) {
- var i0 = segment === 0 ? face.a : ( segment === 1 ? face.b : face.c );
- var i1 = segment === 0 ? face.b : ( segment === 1 ? face.c : face.a );
- var segmentState = this.segments[ i0 * numPoints + i1 ];
- if ( segmentState ) {
- // The segment already has been processed in another face
- continue;
- }
- // Mark segment as processed (also inverted segment)
- this.segments[ i0 * numPoints + i1 ] = true;
- this.segments[ i1 * numPoints + i0 ] = true;
- var p0 = points[ i0 ];
- var p1 = points[ i1 ];
- if ( p0.mark === 0 ) {
- var d = localPlane.distanceToPoint( p0 );
- // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
- if ( d > delta ) {
- p0.mark = 2;
- points2.push( p0 );
- }
- else if ( d < - delta ) {
- p0.mark = 1;
- points1.push( p0 );
- }
- else {
- p0.mark = 3;
- points1.push( p0 );
- var p0_2 = p0.clone();
- p0_2.mark = 3;
- points2.push( p0_2 );
- }
- }
- if ( p1.mark === 0 ) {
- var d = localPlane.distanceToPoint( p1 );
- // mark: 1 for negative side, 2 for positive side, 3 for coplanar point
- if ( d > delta ) {
- p1.mark = 2;
- points2.push( p1 );
- }
- else if ( d < - delta ) {
- p1.mark = 1;
- points1.push( p1 );
- }
- else {
- p1.mark = 3;
- points1.push( p1 );
- var p1_2 = p1.clone();
- p1_2.mark = 3;
- points2.push( p1_2 );
- }
- }
- var mark0 = p0.mark;
- var mark1 = p1.mark;
- if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) {
- // Intersection of segment with the plane
- this.tempLine1.start.copy( p0 );
- this.tempLine1.end.copy( p1 );
- var intersection = localPlane.intersectLine( this.tempLine1 );
- if ( intersection === undefined ) {
- // Shouldn't happen
- console.error( "Internal error: segment does not intersect plane." );
- output.segmentedObject1 = null;
- output.segmentedObject2 = null;
- return 0;
- }
- intersection.mark = 1;
- points1.push( intersection );
- var intersection_2 = intersection.clone();
- intersection_2.mark = 2;
- points2.push( intersection_2 );
- }
- }
- }
- // Calculate debris mass (very fast and imprecise):
- var newMass = object.userData.mass * 0.5;
- // Calculate debris Center of Mass (again fast and imprecise)
- this.tempCM1.set( 0, 0, 0 );
- var radius1 = 0;
- var numPoints1 = points1.length;
- if ( numPoints1 > 0 ) {
- for ( var i = 0; i < numPoints1; i++ ) {
- this.tempCM1.add( points1[ i ] );
- }
- this.tempCM1.divideScalar( numPoints1 );
- for ( var i = 0; i < numPoints1; i++ ) {
- var p = points1[ i ];
- p.sub( this.tempCM1 );
- radius1 = Math.max( radius1, p.x, p.y, p.z );
- }
- this.tempCM1.add( object.position );
- }
- this.tempCM2.set( 0, 0, 0 );
- var radius2 = 0;
- var numPoints2 = points2.length;
- if ( numPoints2 > 0 ) {
- for ( var i = 0; i < numPoints2; i++ ) {
- this.tempCM2.add( points2[ i ] );
- }
- this.tempCM2.divideScalar( numPoints2 );
- for ( var i = 0; i < numPoints2; i++ ) {
- var p = points2[ i ];
- p.sub( this.tempCM2 );
- radius2 = Math.max( radius2, p.x, p.y, p.z );
- }
- this.tempCM2.add( object.position );
- }
- var object1 = null;
- var object2 = null;
- var numObjects = 0;
- if ( numPoints1 > 4 ) {
- object1 = new THREE.Mesh( new THREE.ConvexGeometry( points1 ), object.material );
- object1.position.copy( this.tempCM1 );
- object1.quaternion.copy( object.quaternion );
- this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak );
- numObjects++;
- }
- if ( numPoints2 > 4 ) {
- object2 = new THREE.Mesh( new THREE.ConvexGeometry( points2 ), object.material );
- object2.position.copy( this.tempCM2 );
- object2.quaternion.copy( object.quaternion );
- this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak );
- numObjects++;
- }
- output.object1 = object1;
- output.object2 = object2;
- return numObjects;
- }
- };
- THREE.ConvexObjectBreaker.transformFreeVector = function( v, m ) {
- // input:
- // vector interpreted as a free vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- var x = v.x, y = v.y, z = v.z;
- var e = m.elements;
- v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z;
- v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z;
- v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z;
- return v;
- };
- THREE.ConvexObjectBreaker.transformFreeVectorInverse = function( v, m ) {
- // input:
- // vector interpreted as a free vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- var x = v.x, y = v.y, z = v.z;
- var e = m.elements;
- v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z;
- v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z;
- v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z;
- return v;
- };
- THREE.ConvexObjectBreaker.transformTiedVectorInverse = function( v, m ) {
- // input:
- // vector interpreted as a tied (ordinary) vector
- // THREE.Matrix4 orthogonal matrix (matrix without scale)
- var x = v.x, y = v.y, z = v.z;
- var e = m.elements;
- v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ];
- v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ];
- v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ];
- return v;
- };
- THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function() {
- var v1 = new THREE.Vector3();
- var m1 = new THREE.Matrix3();
- return function transformPlaneToLocalSpace( plane, m, resultPlane ) {
- resultPlane.normal.copy( plane.normal );
- resultPlane.constant = plane.constant;
- var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( v1 ), m );
- THREE.ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m );
- // recalculate constant (like in setFromNormalAndCoplanarPoint)
- resultPlane.constant = - referencePoint.dot( resultPlane.normal );
- };
- }();
|