123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602 |
- THREE.TypedArrayUtils = {};
- /**
- * In-place quicksort for typed arrays (e.g. for Float32Array)
- * provides fast sorting
- * useful e.g. for a custom shader and/or BufferGeometry
- *
- * @author Roman Bolzern <[email protected]>, 2013
- * @author I4DS http://www.fhnw.ch/i4ds, 2013
- * @license MIT License <http://www.opensource.org/licenses/mit-license.php>
- *
- * Complexity: http://bigocheatsheet.com/ see Quicksort
- *
- * Example:
- * points: [x, y, z, x, y, z, x, y, z, ...]
- * eleSize: 3 //because of (x, y, z)
- * orderElement: 0 //order according to x
- */
- THREE.TypedArrayUtils.quicksortIP = function ( arr, eleSize, orderElement ) {
- var stack = [];
- var sp = - 1;
- var left = 0;
- var right = arr.length / eleSize - 1;
- var tmp = 0.0, x = 0, y = 0;
- var swapF = function ( a, b ) {
- a *= eleSize; b *= eleSize;
- for ( y = 0; y < eleSize; y ++ ) {
- tmp = arr[ a + y ];
- arr[ a + y ] = arr[ b + y ];
- arr[ b + y ] = tmp;
- }
- };
-
- var i, j, swap = new Float32Array( eleSize ), temp = new Float32Array( eleSize );
- while ( true ) {
- if ( right - left <= 25 ) {
- for ( j = left + 1; j <= right; j ++ ) {
- for ( x = 0; x < eleSize; x ++ ) {
-
- swap[ x ] = arr[ j * eleSize + x ];
- }
-
- i = j - 1;
-
- while ( i >= left && arr[ i * eleSize + orderElement ] > swap[ orderElement ] ) {
- for ( x = 0; x < eleSize; x ++ ) {
- arr[ ( i + 1 ) * eleSize + x ] = arr[ i * eleSize + x ];
- }
- i --;
- }
- for ( x = 0; x < eleSize; x ++ ) {
- arr[ ( i + 1 ) * eleSize + x ] = swap[ x ];
- }
- }
-
- if ( sp == - 1 ) break;
- right = stack[ sp -- ]; //?
- left = stack[ sp -- ];
- } else {
- var median = ( left + right ) >> 1;
- i = left + 1;
- j = right;
-
- swapF( median, i );
- if ( arr[ left * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
-
- swapF( left, right );
-
- }
- if ( arr[ i * eleSize + orderElement ] > arr[ right * eleSize + orderElement ] ) {
-
- swapF( i, right );
-
- }
- if ( arr[ left * eleSize + orderElement ] > arr[ i * eleSize + orderElement ] ) {
-
- swapF( left, i );
-
- }
- for ( x = 0; x < eleSize; x ++ ) {
- temp[ x ] = arr[ i * eleSize + x ];
- }
-
- while ( true ) {
-
- do i ++; while ( arr[ i * eleSize + orderElement ] < temp[ orderElement ] );
- do j --; while ( arr[ j * eleSize + orderElement ] > temp[ orderElement ] );
-
- if ( j < i ) break;
-
- swapF( i, j );
-
- }
- for ( x = 0; x < eleSize; x ++ ) {
- arr[ ( left + 1 ) * eleSize + x ] = arr[ j * eleSize + x ];
- arr[ j * eleSize + x ] = temp[ x ];
- }
- if ( right - i + 1 >= j - left ) {
- stack[ ++ sp ] = i;
- stack[ ++ sp ] = right;
- right = j - 1;
- } else {
- stack[ ++ sp ] = left;
- stack[ ++ sp ] = j - 1;
- left = i;
- }
- }
- }
- return arr;
- };
- /**
- * k-d Tree for typed arrays (e.g. for Float32Array), in-place
- * provides fast nearest neighbour search
- * useful e.g. for a custom shader and/or BufferGeometry, saves tons of memory
- * has no insert and remove, only buildup and neares neighbour search
- *
- * Based on https://github.com/ubilabs/kd-tree-javascript by Ubilabs
- *
- * @author Roman Bolzern <[email protected]>, 2013
- * @author I4DS http://www.fhnw.ch/i4ds, 2013
- * @license MIT License <http://www.opensource.org/licenses/mit-license.php>
- *
- * Requires typed array quicksort
- *
- * Example:
- * points: [x, y, z, x, y, z, x, y, z, ...]
- * metric: function(a, b){ return Math.pow(a[0] - b[0], 2) + Math.pow(a[1] - b[1], 2) + Math.pow(a[2] - b[2], 2); } //Manhatten distance
- * eleSize: 3 //because of (x, y, z)
- *
- * Further information (including mathematical properties)
- * http://en.wikipedia.org/wiki/Binary_tree
- * http://en.wikipedia.org/wiki/K-d_tree
- *
- * If you want to further minimize memory usage, remove Node.depth and replace in search algorithm with a traversal to root node (see comments at THREE.TypedArrayUtils.Kdtree.prototype.Node)
- */
- THREE.TypedArrayUtils.Kdtree = function ( points, metric, eleSize ) {
- var self = this;
-
- var maxDepth = 0;
-
- var getPointSet = function ( points, pos ) {
- return points.subarray( pos * eleSize, pos * eleSize + eleSize );
- };
-
- function buildTree( points, depth, parent, pos ) {
- var dim = depth % eleSize,
- median,
- node,
- plength = points.length / eleSize;
- if ( depth > maxDepth ) maxDepth = depth;
-
- if ( plength === 0 ) return null;
- if ( plength === 1 ) {
- return new self.Node( getPointSet( points, 0 ), depth, parent, pos );
- }
- THREE.TypedArrayUtils.quicksortIP( points, eleSize, dim );
-
- median = Math.floor( plength / 2 );
-
- node = new self.Node( getPointSet( points, median ), depth, parent, median + pos );
- node.left = buildTree( points.subarray( 0, median * eleSize ), depth + 1, node, pos );
- node.right = buildTree( points.subarray( ( median + 1 ) * eleSize, points.length ), depth + 1, node, pos + median + 1 );
- return node;
-
- }
- this.root = buildTree( points, 0, null, 0 );
-
- this.getMaxDepth = function () {
- return maxDepth;
- };
-
- this.nearest = function ( point, maxNodes, maxDistance ) {
-
- /* point: array of size eleSize
- maxNodes: max amount of nodes to return
- maxDistance: maximum distance to point result nodes should have
- condition (not implemented): function to test node before it's added to the result list, e.g. test for view frustum
- */
- var i,
- result,
- bestNodes;
- bestNodes = new THREE.TypedArrayUtils.Kdtree.BinaryHeap(
- function ( e ) {
- return - e[ 1 ];
- }
- );
- function nearestSearch( node ) {
- var bestChild,
- dimension = node.depth % eleSize,
- ownDistance = metric( point, node.obj ),
- linearDistance = 0,
- otherChild,
- i,
- linearPoint = [];
- function saveNode( node, distance ) {
- bestNodes.push( [ node, distance ] );
- if ( bestNodes.size() > maxNodes ) {
- bestNodes.pop();
- }
- }
- for ( i = 0; i < eleSize; i += 1 ) {
- if ( i === node.depth % eleSize ) {
- linearPoint[ i ] = point[ i ];
- } else {
- linearPoint[ i ] = node.obj[ i ];
- }
- }
- linearDistance = metric( linearPoint, node.obj );
- // if it's a leaf
- if ( node.right === null && node.left === null ) {
- if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
- saveNode( node, ownDistance );
- }
- return;
- }
- if ( node.right === null ) {
- bestChild = node.left;
- } else if ( node.left === null ) {
- bestChild = node.right;
- } else {
- if ( point[ dimension ] < node.obj[ dimension ] ) {
- bestChild = node.left;
- } else {
- bestChild = node.right;
- }
- }
- // recursive search
- nearestSearch( bestChild );
- if ( bestNodes.size() < maxNodes || ownDistance < bestNodes.peek()[ 1 ] ) {
- saveNode( node, ownDistance );
- }
- // if there's still room or the current distance is nearer than the best distance
- if ( bestNodes.size() < maxNodes || Math.abs( linearDistance ) < bestNodes.peek()[ 1 ] ) {
- if ( bestChild === node.left ) {
- otherChild = node.right;
- } else {
- otherChild = node.left;
- }
- if ( otherChild !== null ) {
- nearestSearch( otherChild );
- }
- }
- }
- if ( maxDistance ) {
- for ( i = 0; i < maxNodes; i += 1 ) {
- bestNodes.push( [ null, maxDistance ] );
- }
- }
- nearestSearch( self.root );
- result = [];
- for ( i = 0; i < maxNodes; i += 1 ) {
- if ( bestNodes.content[ i ][ 0 ] ) {
- result.push( [ bestNodes.content[ i ][ 0 ], bestNodes.content[ i ][ 1 ] ] );
- }
- }
-
- return result;
-
- };
-
- };
- /**
- * If you need to free up additional memory and agree with an additional O( log n ) traversal time you can get rid of "depth" and "pos" in Node:
- * Depth can be easily done by adding 1 for every parent (care: root node has depth 0, not 1)
- * Pos is a bit tricky: Assuming the tree is balanced (which is the case when after we built it up), perform the following steps:
- * By traversing to the root store the path e.g. in a bit pattern (01001011, 0 is left, 1 is right)
- * From buildTree we know that "median = Math.floor( plength / 2 );", therefore for each bit...
- * 0: amountOfNodesRelevantForUs = Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
- * 1: amountOfNodesRelevantForUs = Math.ceil( (pamountOfNodesRelevantForUs - 1) / 2 );
- * pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
- * when recursion done, we still need to add all left children of target node:
- * pos += Math.floor( (pamountOfNodesRelevantForUs - 1) / 2 );
- * and I think you need to +1 for the current position, not sure.. depends, try it out ^^
- *
- * I experienced that for 200'000 nodes you can get rid of 4 MB memory each, leading to 8 MB memory saved.
- */
- THREE.TypedArrayUtils.Kdtree.prototype.Node = function ( obj, depth, parent, pos ) {
- this.obj = obj;
- this.left = null;
- this.right = null;
- this.parent = parent;
- this.depth = depth;
- this.pos = pos;
- };
- /**
- * Binary heap implementation
- * @author http://eloquentjavascript.net/appendix2.htm
- */
- THREE.TypedArrayUtils.Kdtree.BinaryHeap = function ( scoreFunction ) {
- this.content = [];
- this.scoreFunction = scoreFunction;
- };
- THREE.TypedArrayUtils.Kdtree.BinaryHeap.prototype = {
- push: function ( element ) {
- // Add the new element to the end of the array.
- this.content.push( element );
- // Allow it to bubble up.
- this.bubbleUp( this.content.length - 1 );
- },
- pop: function () {
- // Store the first element so we can return it later.
- var result = this.content[ 0 ];
- // Get the element at the end of the array.
- var end = this.content.pop();
- // If there are any elements left, put the end element at the
- // start, and let it sink down.
- if ( this.content.length > 0 ) {
- this.content[ 0 ] = end;
- this.sinkDown( 0 );
- }
- return result;
- },
- peek: function () {
- return this.content[ 0 ];
- },
- remove: function ( node ) {
- var len = this.content.length;
- // To remove a value, we must search through the array to find it.
- for ( var i = 0; i < len; i ++ ) {
- if ( this.content[ i ] == node ) {
- // When it is found, the process seen in 'pop' is repeated
- // to fill up the hole.
- var end = this.content.pop();
- if ( i != len - 1 ) {
- this.content[ i ] = end;
- if ( this.scoreFunction( end ) < this.scoreFunction( node ) ) {
- this.bubbleUp( i );
- } else {
- this.sinkDown( i );
- }
- }
- return;
- }
- }
- throw new Error( "Node not found." );
- },
- size: function () {
- return this.content.length;
- },
- bubbleUp: function ( n ) {
- // Fetch the element that has to be moved.
- var element = this.content[ n ];
- // When at 0, an element can not go up any further.
- while ( n > 0 ) {
- // Compute the parent element's index, and fetch it.
- var parentN = Math.floor( ( n + 1 ) / 2 ) - 1,
- parent = this.content[ parentN ];
- // Swap the elements if the parent is greater.
- if ( this.scoreFunction( element ) < this.scoreFunction( parent ) ) {
- this.content[ parentN ] = element;
- this.content[ n ] = parent;
- // Update 'n' to continue at the new position.
- n = parentN;
- } else {
- // Found a parent that is less, no need to move it further.
- break;
- }
- }
- },
- sinkDown: function ( n ) {
- // Look up the target element and its score.
- var length = this.content.length,
- element = this.content[ n ],
- elemScore = this.scoreFunction( element );
- while ( true ) {
- // Compute the indices of the child elements.
- var child2N = ( n + 1 ) * 2, child1N = child2N - 1;
- // This is used to store the new position of the element, if any.
- var swap = null;
- // If the first child exists (is inside the array)...
- if ( child1N < length ) {
- // Look it up and compute its score.
- var child1 = this.content[ child1N ],
- child1Score = this.scoreFunction( child1 );
- // If the score is less than our element's, we need to swap.
- if ( child1Score < elemScore ) swap = child1N;
- }
- // Do the same checks for the other child.
- if ( child2N < length ) {
- var child2 = this.content[ child2N ],
- child2Score = this.scoreFunction( child2 );
- if ( child2Score < ( swap === null ? elemScore : child1Score ) ) swap = child2N;
- }
- // If the element needs to be moved, swap it, and continue.
- if ( swap !== null ) {
- this.content[ n ] = this.content[ swap ];
- this.content[ swap ] = element;
- n = swap;
- } else {
- // Otherwise, we are done.
- break;
- }
- }
- }
- };
|