123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 |
- // Ported from Stefan Gustavson's java implementation
- // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
- // Read Stefan's excellent paper for details on how this code works.
- //
- // Sean McCullough [email protected]
- //
- // Added 4D noise
- // Joshua Koo [email protected]
- /**
- * You can pass in a random number generator object if you like.
- * It is assumed to have a random() method.
- */
- var SimplexNoise = function(r) {
- if (r == undefined) r = Math;
- this.grad3 = [[ 1,1,0 ],[ -1,1,0 ],[ 1,-1,0 ],[ -1,-1,0 ],
- [ 1,0,1 ],[ -1,0,1 ],[ 1,0,-1 ],[ -1,0,-1 ],
- [ 0,1,1 ],[ 0,-1,1 ],[ 0,1,-1 ],[ 0,-1,-1 ]];
- this.grad4 = [[ 0,1,1,1 ], [ 0,1,1,-1 ], [ 0,1,-1,1 ], [ 0,1,-1,-1 ],
- [ 0,-1,1,1 ], [ 0,-1,1,-1 ], [ 0,-1,-1,1 ], [ 0,-1,-1,-1 ],
- [ 1,0,1,1 ], [ 1,0,1,-1 ], [ 1,0,-1,1 ], [ 1,0,-1,-1 ],
- [ -1,0,1,1 ], [ -1,0,1,-1 ], [ -1,0,-1,1 ], [ -1,0,-1,-1 ],
- [ 1,1,0,1 ], [ 1,1,0,-1 ], [ 1,-1,0,1 ], [ 1,-1,0,-1 ],
- [ -1,1,0,1 ], [ -1,1,0,-1 ], [ -1,-1,0,1 ], [ -1,-1,0,-1 ],
- [ 1,1,1,0 ], [ 1,1,-1,0 ], [ 1,-1,1,0 ], [ 1,-1,-1,0 ],
- [ -1,1,1,0 ], [ -1,1,-1,0 ], [ -1,-1,1,0 ], [ -1,-1,-1,0 ]];
- this.p = [];
- for (var i = 0; i < 256; i ++) {
- this.p[i] = Math.floor(r.random() * 256);
- }
- // To remove the need for index wrapping, double the permutation table length
- this.perm = [];
- for (var i = 0; i < 512; i ++) {
- this.perm[i] = this.p[i & 255];
- }
- // A lookup table to traverse the simplex around a given point in 4D.
- // Details can be found where this table is used, in the 4D noise method.
- this.simplex = [
- [ 0,1,2,3 ],[ 0,1,3,2 ],[ 0,0,0,0 ],[ 0,2,3,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,2,3,0 ],
- [ 0,2,1,3 ],[ 0,0,0,0 ],[ 0,3,1,2 ],[ 0,3,2,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,3,2,0 ],
- [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],
- [ 1,2,0,3 ],[ 0,0,0,0 ],[ 1,3,0,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,3,0,1 ],[ 2,3,1,0 ],
- [ 1,0,2,3 ],[ 1,0,3,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,0,3,1 ],[ 0,0,0,0 ],[ 2,1,3,0 ],
- [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],
- [ 2,0,1,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,0,1,2 ],[ 3,0,2,1 ],[ 0,0,0,0 ],[ 3,1,2,0 ],
- [ 2,1,0,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,1,0,2 ],[ 0,0,0,0 ],[ 3,2,0,1 ],[ 3,2,1,0 ]];
- };
- SimplexNoise.prototype.dot = function(g, x, y) {
- return g[0] * x + g[1] * y;
- };
- SimplexNoise.prototype.dot3 = function(g, x, y, z) {
- return g[0] * x + g[1] * y + g[2] * z;
- };
- SimplexNoise.prototype.dot4 = function(g, x, y, z, w) {
- return g[0] * x + g[1] * y + g[2] * z + g[3] * w;
- };
- SimplexNoise.prototype.noise = function(xin, yin) {
- var n0, n1, n2; // Noise contributions from the three corners
- // Skew the input space to determine which simplex cell we're in
- var F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
- var s = (xin + yin) * F2; // Hairy factor for 2D
- var i = Math.floor(xin + s);
- var j = Math.floor(yin + s);
- var G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
- var t = (i + j) * G2;
- var X0 = i - t; // Unskew the cell origin back to (x,y) space
- var Y0 = j - t;
- var x0 = xin - X0; // The x,y distances from the cell origin
- var y0 = yin - Y0;
- // For the 2D case, the simplex shape is an equilateral triangle.
- // Determine which simplex we are in.
- var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
- if (x0 > y0) {i1 = 1; j1 = 0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
- else {i1 = 0; j1 = 1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
- // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
- // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
- // c = (3-sqrt(3))/6
- var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
- var y1 = y0 - j1 + G2;
- var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
- var y2 = y0 - 1.0 + 2.0 * G2;
- // Work out the hashed gradient indices of the three simplex corners
- var ii = i & 255;
- var jj = j & 255;
- var gi0 = this.perm[ii + this.perm[jj]] % 12;
- var gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12;
- var gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12;
- // Calculate the contribution from the three corners
- var t0 = 0.5 - x0 * x0 - y0 * y0;
- if (t0 < 0) n0 = 0.0;
- else {
- t0 *= t0;
- n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
- }
- var t1 = 0.5 - x1 * x1 - y1 * y1;
- if (t1 < 0) n1 = 0.0;
- else {
- t1 *= t1;
- n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1);
- }
- var t2 = 0.5 - x2 * x2 - y2 * y2;
- if (t2 < 0) n2 = 0.0;
- else {
- t2 *= t2;
- n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2);
- }
- // Add contributions from each corner to get the final noise value.
- // The result is scaled to return values in the interval [-1,1].
- return 70.0 * (n0 + n1 + n2);
- };
- // 3D simplex noise
- SimplexNoise.prototype.noise3d = function(xin, yin, zin) {
- var n0, n1, n2, n3; // Noise contributions from the four corners
- // Skew the input space to determine which simplex cell we're in
- var F3 = 1.0 / 3.0;
- var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
- var i = Math.floor(xin + s);
- var j = Math.floor(yin + s);
- var k = Math.floor(zin + s);
- var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too
- var t = (i + j + k) * G3;
- var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
- var Y0 = j - t;
- var Z0 = k - t;
- var x0 = xin - X0; // The x,y,z distances from the cell origin
- var y0 = yin - Y0;
- var z0 = zin - Z0;
- // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
- // Determine which simplex we are in.
- var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
- var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
- if (x0 >= y0) {
- if (y0 >= z0)
- { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order
- else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order
- else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order
- }
- else { // x0<y0
- if (y0 < z0) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; } // Z Y X order
- else if (x0 < z0) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; } // Y Z X order
- else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order
- }
- // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
- // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
- // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
- // c = 1/6.
- var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
- var y1 = y0 - j1 + G3;
- var z1 = z0 - k1 + G3;
- var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
- var y2 = y0 - j2 + 2.0 * G3;
- var z2 = z0 - k2 + 2.0 * G3;
- var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
- var y3 = y0 - 1.0 + 3.0 * G3;
- var z3 = z0 - 1.0 + 3.0 * G3;
- // Work out the hashed gradient indices of the four simplex corners
- var ii = i & 255;
- var jj = j & 255;
- var kk = k & 255;
- var gi0 = this.perm[ii + this.perm[jj + this.perm[kk]]] % 12;
- var gi1 = this.perm[ii + i1 + this.perm[jj + j1 + this.perm[kk + k1]]] % 12;
- var gi2 = this.perm[ii + i2 + this.perm[jj + j2 + this.perm[kk + k2]]] % 12;
- var gi3 = this.perm[ii + 1 + this.perm[jj + 1 + this.perm[kk + 1]]] % 12;
- // Calculate the contribution from the four corners
- var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
- if (t0 < 0) n0 = 0.0;
- else {
- t0 *= t0;
- n0 = t0 * t0 * this.dot3(this.grad3[gi0], x0, y0, z0);
- }
- var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
- if (t1 < 0) n1 = 0.0;
- else {
- t1 *= t1;
- n1 = t1 * t1 * this.dot3(this.grad3[gi1], x1, y1, z1);
- }
- var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
- if (t2 < 0) n2 = 0.0;
- else {
- t2 *= t2;
- n2 = t2 * t2 * this.dot3(this.grad3[gi2], x2, y2, z2);
- }
- var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
- if (t3 < 0) n3 = 0.0;
- else {
- t3 *= t3;
- n3 = t3 * t3 * this.dot3(this.grad3[gi3], x3, y3, z3);
- }
- // Add contributions from each corner to get the final noise value.
- // The result is scaled to stay just inside [-1,1]
- return 32.0 * (n0 + n1 + n2 + n3);
- };
- // 4D simplex noise
- SimplexNoise.prototype.noise4d = function( x, y, z, w ) {
- // For faster and easier lookups
- var grad4 = this.grad4;
- var simplex = this.simplex;
- var perm = this.perm;
-
- // The skewing and unskewing factors are hairy again for the 4D case
- var F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
- var G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
- var n0, n1, n2, n3, n4; // Noise contributions from the five corners
- // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
- var s = (x + y + z + w) * F4; // Factor for 4D skewing
- var i = Math.floor(x + s);
- var j = Math.floor(y + s);
- var k = Math.floor(z + s);
- var l = Math.floor(w + s);
- var t = (i + j + k + l) * G4; // Factor for 4D unskewing
- var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
- var Y0 = j - t;
- var Z0 = k - t;
- var W0 = l - t;
- var x0 = x - X0; // The x,y,z,w distances from the cell origin
- var y0 = y - Y0;
- var z0 = z - Z0;
- var w0 = w - W0;
- // For the 4D case, the simplex is a 4D shape I won't even try to describe.
- // To find out which of the 24 possible simplices we're in, we need to
- // determine the magnitude ordering of x0, y0, z0 and w0.
- // The method below is a good way of finding the ordering of x,y,z,w and
- // then find the correct traversal order for the simplex we’re in.
- // First, six pair-wise comparisons are performed between each possible pair
- // of the four coordinates, and the results are used to add up binary bits
- // for an integer index.
- var c1 = (x0 > y0) ? 32 : 0;
- var c2 = (x0 > z0) ? 16 : 0;
- var c3 = (y0 > z0) ? 8 : 0;
- var c4 = (x0 > w0) ? 4 : 0;
- var c5 = (y0 > w0) ? 2 : 0;
- var c6 = (z0 > w0) ? 1 : 0;
- var c = c1 + c2 + c3 + c4 + c5 + c6;
- var i1, j1, k1, l1; // The integer offsets for the second simplex corner
- var i2, j2, k2, l2; // The integer offsets for the third simplex corner
- var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
- // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
- // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
- // impossible. Only the 24 indices which have non-zero entries make any sense.
- // We use a thresholding to set the coordinates in turn from the largest magnitude.
- // The number 3 in the "simplex" array is at the position of the largest coordinate.
- i1 = simplex[c][0] >= 3 ? 1 : 0;
- j1 = simplex[c][1] >= 3 ? 1 : 0;
- k1 = simplex[c][2] >= 3 ? 1 : 0;
- l1 = simplex[c][3] >= 3 ? 1 : 0;
- // The number 2 in the "simplex" array is at the second largest coordinate.
- i2 = simplex[c][0] >= 2 ? 1 : 0;
- j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0;
- l2 = simplex[c][3] >= 2 ? 1 : 0;
- // The number 1 in the "simplex" array is at the second smallest coordinate.
- i3 = simplex[c][0] >= 1 ? 1 : 0;
- j3 = simplex[c][1] >= 1 ? 1 : 0;
- k3 = simplex[c][2] >= 1 ? 1 : 0;
- l3 = simplex[c][3] >= 1 ? 1 : 0;
- // The fifth corner has all coordinate offsets = 1, so no need to look that up.
- var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
- var y1 = y0 - j1 + G4;
- var z1 = z0 - k1 + G4;
- var w1 = w0 - l1 + G4;
- var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
- var y2 = y0 - j2 + 2.0 * G4;
- var z2 = z0 - k2 + 2.0 * G4;
- var w2 = w0 - l2 + 2.0 * G4;
- var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
- var y3 = y0 - j3 + 3.0 * G4;
- var z3 = z0 - k3 + 3.0 * G4;
- var w3 = w0 - l3 + 3.0 * G4;
- var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
- var y4 = y0 - 1.0 + 4.0 * G4;
- var z4 = z0 - 1.0 + 4.0 * G4;
- var w4 = w0 - 1.0 + 4.0 * G4;
- // Work out the hashed gradient indices of the five simplex corners
- var ii = i & 255;
- var jj = j & 255;
- var kk = k & 255;
- var ll = l & 255;
- var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32;
- var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32;
- var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32;
- var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32;
- var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32;
- // Calculate the contribution from the five corners
- var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
- if (t0 < 0) n0 = 0.0;
- else {
- t0 *= t0;
- n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0);
- }
- var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
- if (t1 < 0) n1 = 0.0;
- else {
- t1 *= t1;
- n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1);
- }
- var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
- if (t2 < 0) n2 = 0.0;
- else {
- t2 *= t2;
- n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2);
- } var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
- if (t3 < 0) n3 = 0.0;
- else {
- t3 *= t3;
- n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3);
- }
- var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
- if (t4 < 0) n4 = 0.0;
- else {
- t4 *= t4;
- n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4);
- }
- // Sum up and scale the result to cover the range [-1,1]
- return 27.0 * (n0 + n1 + n2 + n3 + n4);
- };
|