/** * @author renej * NURBS curve object * * Derives from Curve, overriding getPoint and getTangent. * * Implementation is based on (x, y [, z=0 [, w=1]]) control points with w=weight. * **/ /************************************************************** * NURBS curve **************************************************************/ THREE.NURBSCurve = function ( degree, knots /* array of reals */, controlPoints /* array of Vector(2|3|4) */ ) { this.degree = degree; this.knots = knots; this.controlPoints = []; for ( var i = 0; i < controlPoints.length; ++ i ) { // ensure Vector4 for control points var point = controlPoints[ i ]; this.controlPoints[ i ] = new THREE.Vector4( point.x, point.y, point.z, point.w ); } }; THREE.NURBSCurve.prototype = Object.create( THREE.Curve.prototype ); THREE.NURBSCurve.prototype.constructor = THREE.NURBSCurve; THREE.NURBSCurve.prototype.getPoint = function ( t ) { var u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] ); // linear mapping t->u // following results in (wx, wy, wz, w) homogeneous point var hpoint = THREE.NURBSUtils.calcBSplinePoint( this.degree, this.knots, this.controlPoints, u ); if ( hpoint.w != 1.0 ) { // project to 3D space: (wx, wy, wz, w) -> (x, y, z, 1) hpoint.divideScalar( hpoint.w ); } return new THREE.Vector3( hpoint.x, hpoint.y, hpoint.z ); }; THREE.NURBSCurve.prototype.getTangent = function ( t ) { var u = this.knots[ 0 ] + t * ( this.knots[ this.knots.length - 1 ] - this.knots[ 0 ] ); var ders = THREE.NURBSUtils.calcNURBSDerivatives( this.degree, this.knots, this.controlPoints, u, 1 ); var tangent = ders[ 1 ].clone(); tangent.normalize(); return tangent; };