// Ported from Stefan Gustavson's java implementation // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf // Read Stefan's excellent paper for details on how this code works. // // Sean McCullough banksean@gmail.com // // Added 4D noise // Joshua Koo zz85nus@gmail.com /** * You can pass in a random number generator object if you like. * It is assumed to have a random() method. */ var SimplexNoise = function(r) { if (r == undefined) r = Math; this.grad3 = [[ 1,1,0 ],[ -1,1,0 ],[ 1,-1,0 ],[ -1,-1,0 ], [ 1,0,1 ],[ -1,0,1 ],[ 1,0,-1 ],[ -1,0,-1 ], [ 0,1,1 ],[ 0,-1,1 ],[ 0,1,-1 ],[ 0,-1,-1 ]]; this.grad4 = [[ 0,1,1,1 ], [ 0,1,1,-1 ], [ 0,1,-1,1 ], [ 0,1,-1,-1 ], [ 0,-1,1,1 ], [ 0,-1,1,-1 ], [ 0,-1,-1,1 ], [ 0,-1,-1,-1 ], [ 1,0,1,1 ], [ 1,0,1,-1 ], [ 1,0,-1,1 ], [ 1,0,-1,-1 ], [ -1,0,1,1 ], [ -1,0,1,-1 ], [ -1,0,-1,1 ], [ -1,0,-1,-1 ], [ 1,1,0,1 ], [ 1,1,0,-1 ], [ 1,-1,0,1 ], [ 1,-1,0,-1 ], [ -1,1,0,1 ], [ -1,1,0,-1 ], [ -1,-1,0,1 ], [ -1,-1,0,-1 ], [ 1,1,1,0 ], [ 1,1,-1,0 ], [ 1,-1,1,0 ], [ 1,-1,-1,0 ], [ -1,1,1,0 ], [ -1,1,-1,0 ], [ -1,-1,1,0 ], [ -1,-1,-1,0 ]]; this.p = []; for (var i = 0; i < 256; i ++) { this.p[i] = Math.floor(r.random() * 256); } // To remove the need for index wrapping, double the permutation table length this.perm = []; for (var i = 0; i < 512; i ++) { this.perm[i] = this.p[i & 255]; } // A lookup table to traverse the simplex around a given point in 4D. // Details can be found where this table is used, in the 4D noise method. this.simplex = [ [ 0,1,2,3 ],[ 0,1,3,2 ],[ 0,0,0,0 ],[ 0,2,3,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,2,3,0 ], [ 0,2,1,3 ],[ 0,0,0,0 ],[ 0,3,1,2 ],[ 0,3,2,1 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 1,3,2,0 ], [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ], [ 1,2,0,3 ],[ 0,0,0,0 ],[ 1,3,0,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,3,0,1 ],[ 2,3,1,0 ], [ 1,0,2,3 ],[ 1,0,3,2 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 2,0,3,1 ],[ 0,0,0,0 ],[ 2,1,3,0 ], [ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ], [ 2,0,1,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,0,1,2 ],[ 3,0,2,1 ],[ 0,0,0,0 ],[ 3,1,2,0 ], [ 2,1,0,3 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 0,0,0,0 ],[ 3,1,0,2 ],[ 0,0,0,0 ],[ 3,2,0,1 ],[ 3,2,1,0 ]]; }; SimplexNoise.prototype.dot = function(g, x, y) { return g[0] * x + g[1] * y; }; SimplexNoise.prototype.dot3 = function(g, x, y, z) { return g[0] * x + g[1] * y + g[2] * z; }; SimplexNoise.prototype.dot4 = function(g, x, y, z, w) { return g[0] * x + g[1] * y + g[2] * z + g[3] * w; }; SimplexNoise.prototype.noise = function(xin, yin) { var n0, n1, n2; // Noise contributions from the three corners // Skew the input space to determine which simplex cell we're in var F2 = 0.5 * (Math.sqrt(3.0) - 1.0); var s = (xin + yin) * F2; // Hairy factor for 2D var i = Math.floor(xin + s); var j = Math.floor(yin + s); var G2 = (3.0 - Math.sqrt(3.0)) / 6.0; var t = (i + j) * G2; var X0 = i - t; // Unskew the cell origin back to (x,y) space var Y0 = j - t; var x0 = xin - X0; // The x,y distances from the cell origin var y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords if (x0 > y0) {i1 = 1; j1 = 0;} // lower triangle, XY order: (0,0)->(1,0)->(1,1) else {i1 = 0; j1 = 1;} // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords var y1 = y0 - j1 + G2; var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords var y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners var ii = i & 255; var jj = j & 255; var gi0 = this.perm[ii + this.perm[jj]] % 12; var gi1 = this.perm[ii + i1 + this.perm[jj + j1]] % 12; var gi2 = this.perm[ii + 1 + this.perm[jj + 1]] % 12; // Calculate the contribution from the three corners var t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * this.dot(this.grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } var t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * this.dot(this.grad3[gi1], x1, y1); } var t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * this.dot(this.grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); }; // 3D simplex noise SimplexNoise.prototype.noise3d = function(xin, yin, zin) { var n0, n1, n2, n3; // Noise contributions from the four corners // Skew the input space to determine which simplex cell we're in var F3 = 1.0 / 3.0; var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D var i = Math.floor(xin + s); var j = Math.floor(yin + s); var k = Math.floor(zin + s); var G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too var t = (i + j + k) * G3; var X0 = i - t; // Unskew the cell origin back to (x,y,z) space var Y0 = j - t; var Z0 = k - t; var x0 = xin - X0; // The x,y,z distances from the cell origin var y0 = yin - Y0; var z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // X Y Z order else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } // X Z Y order else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0 y0) ? 32 : 0; var c2 = (x0 > z0) ? 16 : 0; var c3 = (y0 > z0) ? 8 : 0; var c4 = (x0 > w0) ? 4 : 0; var c5 = (y0 > w0) ? 2 : 0; var c6 = (z0 > w0) ? 1 : 0; var c = c1 + c2 + c3 + c4 + c5 + c6; var i1, j1, k1, l1; // The integer offsets for the second simplex corner var i2, j2, k2, l2; // The integer offsets for the third simplex corner var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = simplex[c][1] >= 3 ? 1 : 0; k1 = simplex[c][2] >= 3 ? 1 : 0; l1 = simplex[c][3] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate. i2 = simplex[c][0] >= 2 ? 1 : 0; j2 = simplex[c][1] >= 2 ? 1 : 0; k2 = simplex[c][2] >= 2 ? 1 : 0; l2 = simplex[c][3] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate. i3 = simplex[c][0] >= 1 ? 1 : 0; j3 = simplex[c][1] >= 1 ? 1 : 0; k3 = simplex[c][2] >= 1 ? 1 : 0; l3 = simplex[c][3] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords var y1 = y0 - j1 + G4; var z1 = z0 - k1 + G4; var w1 = w0 - l1 + G4; var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords var y2 = y0 - j2 + 2.0 * G4; var z2 = z0 - k2 + 2.0 * G4; var w2 = w0 - l2 + 2.0 * G4; var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords var y3 = y0 - j3 + 3.0 * G4; var z3 = z0 - k3 + 3.0 * G4; var w3 = w0 - l3 + 3.0 * G4; var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords var y4 = y0 - 1.0 + 4.0 * G4; var z4 = z0 - 1.0 + 4.0 * G4; var w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners var ii = i & 255; var jj = j & 255; var kk = k & 255; var ll = l & 255; var gi0 = perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32; var gi1 = perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32; var gi2 = perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32; var gi3 = perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32; var gi4 = perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32; // Calculate the contribution from the five corners var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * this.dot4(grad4[gi0], x0, y0, z0, w0); } var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * this.dot4(grad4[gi1], x1, y1, z1, w1); } var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * this.dot4(grad4[gi2], x2, y2, z2, w2); } var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) n3 = 0.0; else { t3 *= t3; n3 = t3 * t3 * this.dot4(grad4[gi3], x3, y3, z3, w3); } var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) n4 = 0.0; else { t4 *= t4; n4 = t4 * t4 * this.dot4(grad4[gi4], x4, y4, z4, w4); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * (n0 + n1 + n2 + n3 + n4); };