/* * Cloth Simulation using a relaxed constraints solver */ // Suggested Readings // Advanced Character Physics by Thomas Jakobsen Character // http://freespace.virgin.net/hugo.elias/models/m_cloth.htm // http://en.wikipedia.org/wiki/Cloth_modeling // http://cg.alexandra.dk/tag/spring-mass-system/ // Real-time Cloth Animation http://www.darwin3d.com/gamedev/articles/col0599.pdf var DAMPING = 0.03; var DRAG = 1 - DAMPING; var MASS = 0.1; var restDistance = 25; var xSegs = 10; var ySegs = 10; var clothFunction = plane( restDistance * xSegs, restDistance * ySegs ); var cloth = new Cloth( xSegs, ySegs ); var GRAVITY = 981 * 1.4; var gravity = new THREE.Vector3( 0, - GRAVITY, 0 ).multiplyScalar( MASS ); var TIMESTEP = 18 / 1000; var TIMESTEP_SQ = TIMESTEP * TIMESTEP; var pins = []; var wind = true; var windStrength = 2; var windForce = new THREE.Vector3( 0, 0, 0 ); var ballPosition = new THREE.Vector3( 0, - 45, 0 ); var ballSize = 60; //40 var tmpForce = new THREE.Vector3(); var lastTime; function plane( width, height ) { return function( u, v ) { var x = ( u - 0.5 ) * width; var y = ( v + 0.5 ) * height; var z = 0; return new THREE.Vector3( x, y, z ); }; } function Particle( x, y, z, mass ) { this.position = clothFunction( x, y ); // position this.previous = clothFunction( x, y ); // previous this.original = clothFunction( x, y ); this.a = new THREE.Vector3( 0, 0, 0 ); // acceleration this.mass = mass; this.invMass = 1 / mass; this.tmp = new THREE.Vector3(); this.tmp2 = new THREE.Vector3(); } // Force -> Acceleration Particle.prototype.addForce = function( force ) { this.a.add( this.tmp2.copy( force ).multiplyScalar( this.invMass ) ); }; // Performs Verlet integration Particle.prototype.integrate = function( timesq ) { var newPos = this.tmp.subVectors( this.position, this.previous ); newPos.multiplyScalar( DRAG ).add( this.position ); newPos.add( this.a.multiplyScalar( timesq ) ); this.tmp = this.previous; this.previous = this.position; this.position = newPos; this.a.set( 0, 0, 0 ); }; var diff = new THREE.Vector3(); function satisifyConstraints( p1, p2, distance ) { diff.subVectors( p2.position, p1.position ); var currentDist = diff.length(); if ( currentDist === 0 ) return; // prevents division by 0 var correction = diff.multiplyScalar( 1 - distance / currentDist ); var correctionHalf = correction.multiplyScalar( 0.5 ); p1.position.add( correctionHalf ); p2.position.sub( correctionHalf ); } function Cloth( w, h ) { w = w || 10; h = h || 10; this.w = w; this.h = h; var particles = []; var constraints = []; var u, v; // Create particles for ( v = 0; v <= h; v ++ ) { for ( u = 0; u <= w; u ++ ) { particles.push( new Particle( u / w, v / h, 0, MASS ) ); } } // Structural for ( v = 0; v < h; v ++ ) { for ( u = 0; u < w; u ++ ) { constraints.push( [ particles[ index( u, v ) ], particles[ index( u, v + 1 ) ], restDistance ] ); constraints.push( [ particles[ index( u, v ) ], particles[ index( u + 1, v ) ], restDistance ] ); } } for ( u = w, v = 0; v < h; v ++ ) { constraints.push( [ particles[ index( u, v ) ], particles[ index( u, v + 1 ) ], restDistance ] ); } for ( v = h, u = 0; u < w; u ++ ) { constraints.push( [ particles[ index( u, v ) ], particles[ index( u + 1, v ) ], restDistance ] ); } // While many systems use shear and bend springs, // the relaxed constraints model seems to be just fine // using structural springs. // Shear // var diagonalDist = Math.sqrt(restDistance * restDistance * 2); // for (v=0;v