/** * @author yomboprime https://github.com/yomboprime * * @fileoverview This class can be used to subdivide a convex Geometry object into pieces. * * Usage: * * Use the function prepareBreakableObject to prepare a Mesh object to be broken. * * Then, call the various functions to subdivide the object (subdivideByImpact, cutByPlane) * * Sub-objects that are product of subdivision don't need prepareBreakableObject to be called on them. * * Requisites for the object: * * - Mesh object must have a Geometry (not BufferGeometry) and a Material * * - The Geometry must be convex (this is not tested in the library). You can create convex * Geometries with THREE.ConvexGeometry. The BoxGeometry, SphereGeometry and other convex primitives * can also be used. * * Note: This lib adds member variables to object's userData member and to its vertices. * (see prepareBreakableObject function) * Use with caution and read the code when using with other libs. * * @param {double} minSizeForBreak Min size a debris can have to break. * @param {double} smallDelta Max distance to consider that a point belongs to a plane. * */ THREE.ConvexObjectBreaker = function( minSizeForBreak, smallDelta ) { this.minSizeForBreak = minSizeForBreak || 1.4; this.smallDelta = smallDelta || 0.0001; this.tempLine1 = new THREE.Line3(); this.tempPlane1 = new THREE.Plane(); this.tempPlane2 = new THREE.Plane(); this.tempCM1 = new THREE.Vector3(); this.tempCM2 = new THREE.Vector3(); this.tempVector3 = new THREE.Vector3(); this.tempVector3_2 = new THREE.Vector3(); this.tempVector3_3 = new THREE.Vector3(); this.tempResultObjects = { object1: null, object2: null }; this.segments = []; var n = 30 * 30; for ( var i = 0; i < n; i++ ) { this.segments[ i ] = false; } }; THREE.ConvexObjectBreaker.prototype = { constructor: THREE.ConvexObjectBreaker, prepareBreakableObject: function( object, mass, velocity, angularVelocity, breakable ) { // object is a THREE.Object3d (normally a Mesh), must have a Geometry, and it must be convex. // Its material property is propagated to its children (sub-pieces) // mass must be > 0 // Create vertices mark var vertices = object.geometry.vertices; for ( var i = 0, il = vertices.length; i < il; i++ ) { vertices[ i ].mark = 0; } var userData = object.userData; userData.mass = mass; userData.velocity = velocity.clone(); userData.angularVelocity = angularVelocity.clone(); userData.breakable = breakable; }, /* * @param {int} maxRadialIterations Iterations for radial cuts. * @param {int} maxRandomIterations Max random iterations for not-radial cuts * @param {double} minSizeForRadialSubdivision Min size a debris can have to break in radial subdivision. * * Returns the array of pieces */ subdivideByImpact: function( object, pointOfImpact, normal, maxRadialIterations, maxRandomIterations, minSizeForRadialSubdivision ) { var debris = []; var tempPlane1 = this.tempPlane1; var tempPlane2 = this.tempPlane2; this.tempVector3.addVectors( pointOfImpact, normal ); tempPlane1.setFromCoplanarPoints( pointOfImpact, object.position, this.tempVector3 ); var maxTotalIterations = maxRandomIterations + maxRadialIterations; var scope = this; function subdivideRadial( subObject, startAngle, endAngle, numIterations ) { if ( Math.random() < numIterations * 0.05 || numIterations > maxTotalIterations ) { debris.push( subObject ); return; } var angle = Math.PI; if ( numIterations === 0 ) { tempPlane2.normal.copy( tempPlane1.normal ); tempPlane2.constant = tempPlane1.constant; } else { if ( numIterations <= maxRadialIterations ) { angle = ( endAngle - startAngle ) * ( 0.2 + 0.6 * Math.random() ) + startAngle; // Rotate tempPlane2 at impact point around normal axis and the angle scope.tempVector3_2.copy( object.position ).sub( pointOfImpact ).applyAxisAngle( normal, angle ).add( pointOfImpact ); tempPlane2.setFromCoplanarPoints( pointOfImpact, scope.tempVector3, scope.tempVector3_2 ); } else { angle = ( ( 0.5 * ( numIterations & 1 ) ) + 0.2 * ( 2 - Math.random() ) ) * Math.PI; // Rotate tempPlane2 at object position around normal axis and the angle scope.tempVector3_2.copy( pointOfImpact ).sub( subObject.position ).applyAxisAngle( normal, angle ).add( subObject.position ); scope.tempVector3_3.copy( normal ).add( subObject.position ); tempPlane2.setFromCoplanarPoints( subObject.position, scope.tempVector3_3, scope.tempVector3_2 ); } } // Perform the cut scope.cutByPlane( subObject, tempPlane2, scope.tempResultObjects ); var obj1 = scope.tempResultObjects.object1; var obj2 = scope.tempResultObjects.object2; if ( obj1 ) { subdivideRadial( obj1, startAngle, angle, numIterations + 1 ); } if ( obj2 ) { subdivideRadial( obj2, angle, endAngle, numIterations + 1 ); } } subdivideRadial( object, 0, 2 * Math.PI, 0 ); return debris; }, cutByPlane: function( object, plane, output ) { // Returns breakable objects in output.object1 and output.object2 members, the resulting 2 pieces of the cut. // object2 can be null if the plane doesn't cut the object. // object1 can be null only in case of internal error // Returned value is number of pieces, 0 for error. var geometry = object.geometry; var points = geometry.vertices; var faces = geometry.faces; var numPoints = points.length; var points1 = []; var points2 = []; var delta = this.smallDelta; // Reset vertices mark for ( var i = 0; i < numPoints; i++ ) { points[ i ].mark = 0; } // Reset segments mark var numPointPairs = numPoints * numPoints; for ( var i = 0; i < numPointPairs; i++ ) { this.segments[ i ] = false; } // Iterate through the faces to mark edges shared by coplanar faces for ( var i = 0, il = faces.length - 1; i < il; i++ ) { var face1 = faces[ i ]; for ( var j = i + 1, jl = faces.length; j < jl; j++ ) { var face2 = faces[ j ]; var coplanar = 1 - face1.normal.dot( face2.normal ) < delta; if ( coplanar ) { var a1 = face1.a; var b1 = face1.b; var c1 = face1.c; var a2 = face2.a; var b2 = face2.b; var c2 = face2.c; if ( a1 === a2 || a1 === b2 || a1 === c2 ) { if ( b1 === a2 || b1 === b2 || b1 === c2 ) { this.segments[ a1 * numPoints + b1 ] = true; this.segments[ b1 * numPoints + a1 ] = true; } else { this.segments[ c1 * numPoints + a1 ] = true; this.segments[ a1 * numPoints + c1 ] = true; } } else if ( b1 === a2 || b1 === b2 || b1 === c2 ) { this.segments[ c1 * numPoints + b1 ] = true; this.segments[ b1 * numPoints + c1 ] = true; } } } } // Transform the plane to object local space var localPlane = this.tempPlane1; object.updateMatrix(); THREE.ConvexObjectBreaker.transformPlaneToLocalSpace( plane, object.matrix, localPlane ); // Iterate through the faces adding points to both pieces for ( var i = 0, il = faces.length; i < il; i ++ ) { var face = faces[ i ]; for ( var segment = 0; segment < 3; segment++ ) { var i0 = segment === 0 ? face.a : ( segment === 1 ? face.b : face.c ); var i1 = segment === 0 ? face.b : ( segment === 1 ? face.c : face.a ); var segmentState = this.segments[ i0 * numPoints + i1 ]; if ( segmentState ) { // The segment already has been processed in another face continue; } // Mark segment as processed (also inverted segment) this.segments[ i0 * numPoints + i1 ] = true; this.segments[ i1 * numPoints + i0 ] = true; var p0 = points[ i0 ]; var p1 = points[ i1 ]; if ( p0.mark === 0 ) { var d = localPlane.distanceToPoint( p0 ); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point if ( d > delta ) { p0.mark = 2; points2.push( p0 ); } else if ( d < - delta ) { p0.mark = 1; points1.push( p0 ); } else { p0.mark = 3; points1.push( p0 ); var p0_2 = p0.clone(); p0_2.mark = 3; points2.push( p0_2 ); } } if ( p1.mark === 0 ) { var d = localPlane.distanceToPoint( p1 ); // mark: 1 for negative side, 2 for positive side, 3 for coplanar point if ( d > delta ) { p1.mark = 2; points2.push( p1 ); } else if ( d < - delta ) { p1.mark = 1; points1.push( p1 ); } else { p1.mark = 3; points1.push( p1 ); var p1_2 = p1.clone(); p1_2.mark = 3; points2.push( p1_2 ); } } var mark0 = p0.mark; var mark1 = p1.mark; if ( ( mark0 === 1 && mark1 === 2 ) || ( mark0 === 2 && mark1 === 1 ) ) { // Intersection of segment with the plane this.tempLine1.start.copy( p0 ); this.tempLine1.end.copy( p1 ); var intersection = localPlane.intersectLine( this.tempLine1 ); if ( intersection === undefined ) { // Shouldn't happen console.error( "Internal error: segment does not intersect plane." ); output.segmentedObject1 = null; output.segmentedObject2 = null; return 0; } intersection.mark = 1; points1.push( intersection ); var intersection_2 = intersection.clone(); intersection_2.mark = 2; points2.push( intersection_2 ); } } } // Calculate debris mass (very fast and imprecise): var newMass = object.userData.mass * 0.5; // Calculate debris Center of Mass (again fast and imprecise) this.tempCM1.set( 0, 0, 0 ); var radius1 = 0; var numPoints1 = points1.length; if ( numPoints1 > 0 ) { for ( var i = 0; i < numPoints1; i++ ) { this.tempCM1.add( points1[ i ] ); } this.tempCM1.divideScalar( numPoints1 ); for ( var i = 0; i < numPoints1; i++ ) { var p = points1[ i ]; p.sub( this.tempCM1 ); radius1 = Math.max( radius1, p.x, p.y, p.z ); } this.tempCM1.add( object.position ); } this.tempCM2.set( 0, 0, 0 ); var radius2 = 0; var numPoints2 = points2.length; if ( numPoints2 > 0 ) { for ( var i = 0; i < numPoints2; i++ ) { this.tempCM2.add( points2[ i ] ); } this.tempCM2.divideScalar( numPoints2 ); for ( var i = 0; i < numPoints2; i++ ) { var p = points2[ i ]; p.sub( this.tempCM2 ); radius2 = Math.max( radius2, p.x, p.y, p.z ); } this.tempCM2.add( object.position ); } var object1 = null; var object2 = null; var numObjects = 0; if ( numPoints1 > 4 ) { object1 = new THREE.Mesh( new THREE.ConvexGeometry( points1 ), object.material ); object1.position.copy( this.tempCM1 ); object1.quaternion.copy( object.quaternion ); this.prepareBreakableObject( object1, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius1 > this.minSizeForBreak ); numObjects++; } if ( numPoints2 > 4 ) { object2 = new THREE.Mesh( new THREE.ConvexGeometry( points2 ), object.material ); object2.position.copy( this.tempCM2 ); object2.quaternion.copy( object.quaternion ); this.prepareBreakableObject( object2, newMass, object.userData.velocity, object.userData.angularVelocity, 2 * radius2 > this.minSizeForBreak ); numObjects++; } output.object1 = object1; output.object2 = object2; return numObjects; } }; THREE.ConvexObjectBreaker.transformFreeVector = function( v, m ) { // input: // vector interpreted as a free vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z; v.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z; v.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z; return v; }; THREE.ConvexObjectBreaker.transformFreeVectorInverse = function( v, m ) { // input: // vector interpreted as a free vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z; v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z; v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z; return v; }; THREE.ConvexObjectBreaker.transformTiedVectorInverse = function( v, m ) { // input: // vector interpreted as a tied (ordinary) vector // THREE.Matrix4 orthogonal matrix (matrix without scale) var x = v.x, y = v.y, z = v.z; var e = m.elements; v.x = e[ 0 ] * x + e[ 1 ] * y + e[ 2 ] * z - e[ 12 ]; v.y = e[ 4 ] * x + e[ 5 ] * y + e[ 6 ] * z - e[ 13 ]; v.z = e[ 8 ] * x + e[ 9 ] * y + e[ 10 ] * z - e[ 14 ]; return v; }; THREE.ConvexObjectBreaker.transformPlaneToLocalSpace = function() { var v1 = new THREE.Vector3(); var m1 = new THREE.Matrix3(); return function transformPlaneToLocalSpace( plane, m, resultPlane ) { resultPlane.normal.copy( plane.normal ); resultPlane.constant = plane.constant; var referencePoint = THREE.ConvexObjectBreaker.transformTiedVectorInverse( plane.coplanarPoint( v1 ), m ); THREE.ConvexObjectBreaker.transformFreeVectorInverse( resultPlane.normal, m ); // recalculate constant (like in setFromNormalAndCoplanarPoint) resultPlane.constant = - referencePoint.dot( resultPlane.normal ); }; }();