1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889 |
- // This code simulates a potential flow (subsonic flow) around a horizontal NACA0012 airfoil.
- // The problem is nonlinear because the air density depends on the air speed.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The domain regions as defined in 'airfoil2D.geo':
- int air = 1, airfoil = 2, downstream = 3, upstream = 4;
-
- // Load the 'airfoil2D' mesh:
- mesh mymesh("airfoil2D.msh");
-
- // Define the whole outer boundary:
- int gammaouter = regionunion({upstream, downstream});
-
- // Define the velocity potential field 'phi' with standard nodal shape functions ("h1").
- // grad(phi) is the fluid velocity. Field x is the x coordinate field.
- field phi("h1"), x("x");
-
- // Use interpolation order 1:
- phi.setorder(air, 1);
-
- // Specific weight of air under some circumstances:
- double gamma = 1.4;
-
- // Define the air density 'rho' and the Mach number:
- expression rho = pow(1 + (gamma-1)/2.0 * 0.7 * 0.7 * (1-grad(phi)*grad(phi)), 1.0/(gamma-1));
- expression machnumber = sqrt(grad(phi)*grad(phi)) / sqrt(1.0/(0.7*0.7) + 0.5*(gamma-1) * (1-grad(phi)*grad(phi)));
-
- // We suppose outside the air domain a uniform speed of 1 with direction left to right.
- // Since grad(phi) is the speed we have that grad(x) indeed gives us what we want.
- phi.setconstraint(gammaouter, x);
-
- // Define the potential flow formulation:
- formulation pf;
-
- // On the airfoil boundary the default Neumann condition dphi/dnormal = 0
- // automatically ensures that there is no fluid entering the airfoil.
- // We thus do not need anything else than this:
- pf += integral(air, rho * grad(dof(phi)) * grad(tf(phi)) );
-
- // Start the nonlinear iteration with an all zero guess:
- vec sol(pf);
-
- double relres = 1;
- while (relres > 1e-7)
- {
- // Generate the formulation:
- pf.generate();
- // Get A and b to solve Ax = b:
- mat A = pf.A();
- vec b = pf.b();
-
- // Compute a relative residual:
- relres = (b - A*sol).norm() / b.norm();
-
- // Solve Ax = b:
- sol = solve(A, b);
-
- // Transfer the data from the solution vector to field 'phi' on the whole 'air' region:
- phi.setdata(air, sol);
-
- std::cout << "Current iteration has relative residual: " << relres << std::endl;
- }
-
- // Write the fluid speed (i.e. grad(phi)) and the Mach number:
- grad(phi).write(air, "flowspeed.pos");
- machnumber.write(air, "machnumber.pos");
-
- // Code validation line. Can be removed.
- std::cout << (machnumber.integrate(air, 3) < 62.4149 && machnumber.integrate(air, 3) > 62.4145);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|