123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144 |
- // This example shows the time-simulation of a 2D axisymmetric high-temperature superconductor (HTS):
- // a superconducting tube is used to shield its inside from an externally applied magnetic field
- // that increases linearly over time. For the simulation the so called a-v magnetodynamic formulation
- // is used. The v part can be disregarded in the configuration of this example.
- //
- // The tube height is 210 mm, its thickness is 1 mm and its inner radius is 10 mm.
- //
- // This example is based on and validated with the experimental and simulation work done by K. Hogan in his thesis
- // "Passive magnetic shielding with bulk high temperature superconductors under a non-uniform magnetic field".
- //
- // Details on the equations for HTS can also be found in "Numerical simulation of the magnetization of
- // high-temperature superconductors: a 3D finite element method using a single time-step iteration" (G. Lousberg)
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The physical region numbers as defined in the mesh file:
- int tube = 1, air = 2, domainskin = 3;
-
- setaxisymmetry();
-
- mesh mymesh("tubeinair.msh");
-
- // Define the whole domain for convenience:
- int wholedomain = regionunion({tube, air});
-
- // Magnetic permeability of the air:
- double mu = 4.0*getpi()*1e-7;
-
- // In this axisymmetric problem the magnetic vector potential can
- // be expressed as a vector with only a non-zero z component:
- field az("h1"), x("x");
-
- expression a = array3x1(0,0,az);
-
- // Put a magnetic wall (i.e. set field a to 0) all
- // around the domain (no magnetic flux can cross it):
- az.setconstraint(domainskin);
-
- // The magnetic vector potential a is rewritten as the sum of a known
- // source term and an unknown part to be determined: atotal = a + asource.
- // We want to apply an external induction field b of 1 mT in
- // the y direction that linearly increases over time:
- expression bsource = array3x1(0,1e-3*t(),0);
- // Since b = curl(a) (in cylindrical coordinates) a valid choice for a is:
- expression asource = array3x1(0,0,-1e-3*0.5*t()*x);
- // And dt(a)/dt is:
- expression dtasource = array3x1(0,0,-1e-3*0.5*x);
-
-
- // The strong form of the magnetodynamic a-v formulation is
- //
- // curl( 1/mu * curl(a) ) + sigma * (dt(a) + grad(v)) = js, with b = curl(a) and e = -dt(a) - grad(v)
- //
- // Here grad(v) is zero because of axisymmetry and y direction bsource and the electric field becomes:
- //
- expression e = -dt(a)-dtasource;
-
- // The conductivity of the high temperature superconductor is modeled using
- // a power law relation between the electric field and the current density:
- //
- // J = Jc/Ec^(1/n) * norm(E)^((1-n)/n) * E
- // |_______________________________|
- // sigma(E)
- //
- // where the critical current density Jc [A/m^2] and critical electric field Ec [V/m] are supposed
- // constant here and the J(E) relation is isotropic. An extra 1e-11 is added to never divide by 0.
- //
- double n = 30.0, Ec = 1e-4, Jc = 1e8;
-
- expression sigma = Jc/( pow(Ec,1.0/n) ) * pow( norm(e) + 1e-11, (1.0-n)/n );
-
-
- // Define the weak magnetodynamic formulation:
- formulation magdyn;
-
- magdyn += integral(wholedomain, 1/mu*( curl(dof(a)) + bsource ) * curl(tf(a)) );
- // Add an extra odd integration degree for convergence:
- magdyn += integral(tube, sigma*( dt(dof(a)) + dtasource )*tf(a), +1 );
-
-
- // Start the implicit Euler time resolution with an all zero solution and time derivative:
- vec initsol(magdyn), initdtsol(magdyn);
-
- impliciteuler eul(magdyn, initsol, initdtsol);
- // Tolerance on the nonlinear iteration:
- eul.settolerance(1e-4);
-
- // Use a 1 second timestep:
- double timestep = 1.0;
- // Run from 0 to 150 sec with a fixed-point nonlinear iteration at every timestep:
- std::vector<std::vector<vec>> sols = eul.runnonlinear(0.0, timestep, 150.0);
- // Field a is available at every timestep in sols[0] and its time derivative in sols[1]:
- std::vector<vec> asol = sols[0];
- std::vector<vec> dtasol = sols[1];
-
- // Loop over all time solutions:
- std::vector<double> bcenter(asol.size());
- for (int i = 0; i < asol.size(); i++)
- {
- // Set variable t() to the time of the current timestep:
- settime(timestep*i);
-
- // Make the data of vector asol[i] available in field az:
- az.setdata(wholedomain, asol[i]);
-
- // Write a and b = curl(a) to disk:
- norm(a).write(wholedomain, "norma" + std::to_string(i+1000) + ".vtu");
- norm(curl(a) + bsource).write(wholedomain, "normbtotal" + std::to_string(i+1000) + ".vtu");
-
- // Output the b induction field [T] at the tube center to assess the shielding effectiveness.
- // Interpolate at a x coordinate slightly away from 0 to avoid NaN issues:
- bcenter[i] = norm(curl(a) + bsource).interpolate(wholedomain, {1e-10,0,0})[0];
- std::cout << "b source " << timestep*i << " mT --> b tube center " << bcenter[i]*1e3 << " mT" << std::endl;
- }
- // Combine all timesteps in a ParaView .pvd file for convenience:
- std::vector<double> timestepvalues(151);
- for (int i = 0; i < 151; i++)
- timestepvalues[i] = timestep*i;
- grouptimesteps("normbtotal.pvd", "normbtotal", 1000, timestepvalues);
-
- // Write to file the field at the tube center for all timesteps:
- writevector("bcenter.csv", bcenter);
-
- // Code validation line. Can be removed:
- std::cout << (bcenter[asol.size()-1] < 0.03746 && bcenter[asol.size()-1] > 0.03744);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|