123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104 |
- // This code computes the resistance and capacitance in a 3D geometry made of a
- // conducting trace connected to a circular-shaped parallel-plate air capacitor.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- wallclock clk;
-
- // The domain regions as defined in 'rc.geo':
- int electrode = 1, ground = 2, conductor = 3, dielectric = 4;
-
- // Load the mesh:
- mesh mymesh("rc.msh");
-
- // Define the whole domain for convenience:
- int wholedomain = regionunion({conductor, dielectric});
-
- // Nodal shape functions 'h1' for the electric potential field.
- // Harmonics 2 and 3 are respectively the in-phase and quadrature
- // component of the electric potential field.
- field v("h1", {2,3});
-
- // The working frequency is 1 MHz:
- double freq = 1e6;
- setfundamentalfrequency(freq);
-
- // Use interpolation order 1 on the whole domain (default).
-
- // Force 1 V in-phase on the electrode and 0 V on the ground:
- double appliedvoltage = 1;
- v.harmonic(2).setconstraint(electrode, 1);
- v.harmonic(3).setconstraint(electrode, 0);
- v.setconstraint(ground, 0);
-
- // sigma is the electric conductivity of the conductor [S/m]:
- double sigma = 1e3;
- // epsilon is the electric permittivity of the air [F/m]:
- double epsilon = 8.854e-12;
-
- formulation electrokinetics;
-
- // Define the weak formulation for the conduction current in
- // the conductor and displacement current in the dielectric.
- //
- // The strong form is:
- //
- // div(sigma * grad(v)) + div(epsilon * grad(dt(v))) = 0
- //
- // with E = -grad(v) and J = sigma*E in the conductor.
- //
- electrokinetics += integral(conductor, sigma*grad(dof(v))*grad(tf(v)));
- electrokinetics += integral(dielectric, epsilon*grad(dt(dof(v)))*grad(tf(v)));
-
- electrokinetics.generate();
-
- // Solve the algebraic problem Ax = b to get the solution vector x:
- vec solv = solve(electrokinetics.A(), electrokinetics.b());
-
- // Transfer the data from the solution vector to the v field:
- v.setdata(wholedomain, solv);
- // Write the electric potential:
- v.write(wholedomain, "v.pos");
-
- // Compute the total current flowing trough the electrode face.
- // Since the computation involves a gradient that has to be
- // calculated in the volume (and not on the electrode face)
- // one can not simply call (normal(electrode)*J).integrate(electrode,4)
- // since with this a surface gradient will be calculated.
- // 'on()' is called to force the evaluation in the volume.
-
- double Iinphase = (-normal(electrode) * on(conductor, sigma*(-grad(v.harmonic(2)))) ).integrate(electrode, 4);
- double Iquadrature = (-normal(electrode) * on(conductor, sigma*(-grad(v.harmonic(3)))) ).integrate(electrode, 4);
- double normI = sqrt(Iinphase*Iinphase + Iquadrature*Iquadrature);
- // The voltage and currents are known, thus R and C are known as well:
- double R = appliedvoltage/pow(normI,2) * Iinphase;
- double ZC = appliedvoltage/pow(normI,2) * Iquadrature;
- double C = 1/(ZC*2*getpi()*freq);
-
- std::cout << std::endl << "I = " << Iinphase << " + " << Iquadrature << "j A" << std::endl;
- std::cout << std::endl << "R = " << R << " Ohm. C = " << C << " F (parallel plate formula gives " << epsilon*getpi()*(300e-6*300e-6)/30e-6 << ")" << std::endl;
- std::cout << "Refine the mesh for a better match." << std::endl << std::endl;
-
- clk.print("Total computation time: ");
-
- // Code validation line. Can be removed.
- std::cout << (C < 8.34113e-14 && C > 8.34111e-14);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
-
- sparselizard();
-
- SlepcFinalize();
-
- return 0;
- }
|