123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- // This code simulates the steady-state electromagnetic waves in a cross-shaped
- // 3D waveguide made of a perfect conductor.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The domain regions as defined in 'waveguide3D.geo':
- int left = 1, skin = 2, wholedomain = 3;
- mesh mymesh("waveguide3D.msh");
- // Edge shape functions 'hcurl' for the electric field E.
- // Fields x, y and z are the x, y and z coordinate fields.
- field E("hcurl"), x("x"), y("y"), z("z");
- // Use interpolation order 2 on the whole domain:
- E.setorder(wholedomain, 2);
-
- // The cutoff frequency for a 0.2x0.2 m^2 cross section is freq = 1.06 GHz in theory.
- // With this code and a fine enough mesh you will get the same value.
- double freq = 1.2e9, c = 3e8, pi = 3.14159, k = 2*pi*freq/c;
-
- // The waveguide is a perfect conductor. We thus force all
- // tangential components of E to 0 on the waveguide skin.
- E.setconstraint(skin);
- // We force an electric field in the z direction on region 'left'
- // that is 0 on the exterior of 'left' and 1 in the center.
- E.setconstraint(left, cos(y/0.2*pi)* cos(z/0.2*pi)* array3x1(0,0,1));
- formulation maxwell;
-
- // This is the weak formulation for electromagnetic waves:
- maxwell += integral(wholedomain, -curl(dof(E))*curl(tf(E)) + k*k*dof(E)*tf(E));
-
- // Generate and solve the algebraic system Ax = b:
- maxwell.generate();
- vec solE = solve(maxwell.A(), maxwell.b());
-
- // Transfer the data from the solution vector to field E:
- E.setdata(wholedomain, solE);
- // Save the electric field E with an order 2 interpolation:
- E.write(wholedomain, "E.pos", 2);
-
- // Code validation line. Can be removed.
- std::cout << ((abs(E)*curl(E)).integrate(wholedomain, 5) < 6.9398e-07 && (abs(E)*curl(E)).integrate(wholedomain, 5) > 6.93978e-07);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|