123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263 |
- // This code simulates the static mechanical deflection of a 3D disk when a volume
- // force is applied. The disk is clamped at its outer face.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The domain regions as defined in 'disk.geo':
- int vol = 1, sur = 2, top = 3;
-
- // The mesh can be curved!
- mesh mymesh("disk.msh");
-
- // Nodal shape functions 'h1' with 3 components.
- // Field u is the membrane deflection.
- field u("h1xyz");
- // Use interpolation order 3 on 'vol', the whole domain:
- u.setorder(vol, 3);
-
- // Clamp on surface 'sur' (i.e. 0 valued-Dirichlet conditions):
- u.setconstraint(sur);
-
- // E is Young's modulus. nu is Poisson's ratio.
- parameter E, nu;
- E|vol = 150e9; nu|vol = 0.3;
-
- formulation elasticity;
- // The linear elasticity formulation is classical and thus predefined:
- elasticity += integral(vol, predefinedelasticity(dof(u), tf(u), E, nu));
- // Add a volumic force in the -z direction:
- elasticity += integral(vol, array1x3(0,0,-10)*tf(u));
- elasticity.generate();
- vec solu = solve(elasticity.A(), elasticity.b());
- // Transfer the data from the solution vector to the u field:
- u.setdata(vol, solu);
- // Write the deflection on the top surface of the membrane.
- // Write with an order 3 interpolation. Exaggerate the deflection by a factor 1e9.
- (0.5e9*u).write(top, "u.pos", 3);
-
- // Code validation line. Can be removed.
- std::cout << (compz(u).integrate(vol, u, 5) < -1.24111e-10 && compz(u).integrate(vol, u, 5) > -1.24113e-10);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|