123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- // This code gives the static deflection and mechanical vibration eigenfrequencies and eigenmodes
- // around that static deflection for a 3D bilayer disk (800um diameter, 10um thick) whose top layer is prestressed,
- // whose bottom layer is clamped at its external boundary and on top of which the atmospheric pressure is pushing.
- //
- // Small-strain GEOMETRIC NONLINEARITY is used to simulate this prestressed membrane.
- //
- // With minimal extra effort the buckling of the membrane can be simulated with the Newmark time
- // resolution available in sparselizard.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The domain regions as defined in 'disk.geo':
- int botlayer = 1, toplayer = 2, sur = 3, top = 4;
-
- // The mesh can be curved!
- mesh mymesh("disk.msh");
-
- // Define the whole domain for convenience:
- int vol = regionunion({botlayer, toplayer});
-
- // Nodal shape functions 'h1' with 3 components.
- // Field u is the membrane deflection.
- field u("h1xyz");
-
- // Use interpolation order 2 on the whole domain:
- u.setorder(vol, 2);
-
- // Clamp on surface 'sur' (i.e. 0 valued-Dirichlet conditions):
- u.setconstraint(sur);
-
- // E is Young's modulus [Pa]. nu is Poisson's ratio []. rho is the density [kg/m^3].
- // The material is a polymer.
- parameter E, nu, rho;
- E|botlayer = 10e9; nu|botlayer = 0.4; rho|botlayer = 1500;
- E|toplayer = 15e9; nu|toplayer = 0.4; rho|toplayer = 2000;
-
- formulation elasticity;
-
- // The linear elasticity formulation with geometric nonlinearity for small strains is predefined:
- elasticity += integral(botlayer, predefinedelasticity(dof(u), tf(u), u, E, nu, 0.0));
- // The top layer is prestressed with 10 MPa in the x and y direction (sigma xx and yy):
- expression prestress(6,1,{10e6,10e6,0,0,0,0});
- elasticity += integral(toplayer, predefinedelasticity(dof(u), tf(u), u, E, nu, prestress));
- // Add the atmospheric pressure force at the top face (perpendicular to it).
- // With u provided as second argument all calculations are performed on the deformed
- // mesh for this term (thus the normal is updated with the deflection).
- double pressure = 1e5;
- elasticity += integral(top, u, -pressure*normal(top)*tf(u));
-
-
- ///// STEP 1: GET THE STATIC DEFLECTION WITH A NONLINEAR LOOP:
-
- // Start with an all-zero deflection:
- vec solu(elasticity);
-
- double relres = 1;
- while (relres > 1e-5)
- {
- // Generate and get the algebraic matrix A and vector b of the static Ax = b problem:
- elasticity.generate();
-
- mat A = elasticity.A();
- vec b = elasticity.b();
-
- // Compute the relative residual at the previous iteration:
- relres = (b-A*solu).norm() / b.norm();
-
- // Solve for x in Ax = b:
- solu = solve(A, b);
- // Make solution available in field u:
- u.setdata(vol, solu);
-
- // Write the deflection on the top surface of the membrane with an order 2 interpolation:
- u.write(top, "ustatic.pos", 2);
-
- std::cout << "Relative residual is: " << relres << std::endl;
- }
-
- std::cout << std::endl << "Peak static deflection: " << norm(u).max(vol,4)[0]*1e6 << " um" << std::endl;
-
-
- ///// STEP 2: COMPUTE THE EIGENFREQUENCIES AND EIGENMODES AROUND THE STATIC DEFLECTION:
-
- // Add the inertia terms to the formulation (required for eigenvalue computation):
- elasticity += integral(vol, -rho*dtdt(dof(u))*tf(u));
-
-
- elasticity.generate();
-
- // Get the stiffness and mass matrix:
- mat K = elasticity.K();
- mat M = elasticity.M();
-
- // Remove the rows and columns corresponding to the 0 constraints:
- K.removeconstraints();
- M.removeconstraints();
-
- // Create the object to solve the generalised eigenvalue problem K*x = lambda*M*x :
- eigenvalue eig(K, M);
-
- // Compute the 5 eigenvalues closest to the target magnitude 0.0 (i.e. the 5 first ones):
- eig.compute(5, 0.0);
-
- // Print the eigenfrequencies:
- eig.printeigenfrequencies();
-
- // The eigenvectors are real thus we only need the real part:
- std::vector<vec> myeigenvectors = eig.geteigenvectorrealpart();
-
- // Loop on all eigenvectors found:
- for (int i = 0; i < myeigenvectors.size(); i++)
- {
- // Transfer the data from the ith eigenvector to field u:
- u.setdata(top, myeigenvectors[i]);
- // Write the deflection on the top surface of the membrane with an order 2 interpolation:
- u.write(top, "ueigenmode"+std::to_string(i)+".pos", 2);
- }
- // Code validation line. Can be removed.
- std::cout << (eig.geteigenvaluerealpart()[0] < 1.1453e+12 && eig.geteigenvaluerealpart()[0] > 1.1451e+12);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|