123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- #include "sparselizardbase.h"
- #include "string.h"
- using namespace std;
- using namespace mathop;
- struct Mesher {
- mesh model;
- vector<string> files;
- string tempName;
- bool __initialized;
- int segmentation_number;
- Mesher() {
- this->__initialized = false;
- this->tempName = "temp.msh";
- this->segmentation_number = 1000000;//997;
- // 16127
- }
- int add(const char* filename) {
- this->files.push_back(filename);
- return this->getfileregion(this->files.size());
- }
- void load() {
- this->model.load(false, this->files, 5, false, true, this->segmentation_number);
- }
- void addit(const char* filename) {
- vector<string> temp;
- if(this->__initialized) {
- this->write(this->tempName);
- temp.push_back(this->tempName);
- } else {
- this->__initialized = true;
- }
- temp.push_back(filename);
- this->model.load(true, temp, 5, false);
- }
- void write(string filename) {
- this->model.write(filename);
- }
- void rotate (double x,double y,double z) { this->model.rotate(x,y,z); }
- void translate(double x,double y,double z) { this->model.shift(x,y,z); }
- void scale (double x,double y,double z) { this->model.scale(x,y,z); }
- void rotate (int r, double x,double y,double z) { this->model.rotate(r,x,y,z); }
- void translate(int r, double x,double y,double z) { this->model.shift(r,x,y,z); }
- void scale (int r, double x,double y,double z) { this->model.scale(r,x,y,z); }
- void debug(){ this->model.printphysicalregions(); }
- int getphysicalregion(int file, int region, int dimension) {
- int result = (this->segmentation_number + 1000 * file)*(dimension + 1) + region;
- return result;
- }
- int getfileregion(int file) {
- return 999000000 + file;
- }
- void printphysicalregions() {
- vector<int> regions = this->model.getphysicalregions()->getallnumbers();
- for (int i=0;i<regions.size();i++) {
- int temp = regions[i];
- int region = temp % (this->segmentation_number);
- int dim = temp / (this->segmentation_number) -1;
- int pd = (1000*(dim+1));
- int file = region / pd;
- int model = region % pd;
- cout << temp << "\tregion: " << region << "\tmodel: " << model << "\tdim: " << dim << "\tfile: " << file << endl;
- }
- }
- };
- int resolve(Mesher mesh) {
- int Stator = mesh.getfileregion(1);
- int Magnet = mesh.getfileregion(2);
- int All = regionunion({Stator, Magnet});
-
- int StatorFace = mesh.getphysicalregion(1, 102, 2);
- int StatorFaceBack = mesh.getphysicalregion(1, 103, 2);
- int MagnetFace = mesh.getphysicalregion(2, 5, 2);
- // cout << endl << "[!]Continuitycondition: " << StatorFace << " , " << MagnetFace << endl << endl;
- // cout << "a";
- // int Intersection = regionintersection({StatorFace, MagnetFace});
- // cout << "a";
- // Nodal shape functions 'h1' for the z component of the vector potential.
- // field a("h1xyz");
- spanningtree spantree({Stator, Magnet});
- field a("hcurl", spantree);
- a.setgauge(All);
- a.setorder(All, 2);
- field x("x"), y("y"), z("z");
- // Vacuum magnetic permeability [H/m]:
- double mu0 = 4.0*getpi()*1e-7;
- // Define the permeability in all regions.
- // Taking into account saturation and measured B-H curves can be easily done
- // by defining an expression based on a 'spline' object (see documentation).
- parameter mu;
- mu|All = 5000.0*mu0;
- // Overwrite on non-magnetic regions:
- mu|Magnet = 1.05*mu0;
- // The remanent induction field in the magnet is 0.5 Tesla perpendicular to the magnet:
- expression magnetdirection = array3x1(0,0,1);
- expression bremanent = 0.5 * magnetdirection;
- formulation magnetostatics;
- // The strong form of the magnetostatic formulation is curl( 1/mu * curl(a) ) = j, with b = curl(a):
- magnetostatics += integral(All, 1/mu* curl(dof(a)) * curl(tf(a)) );
- // Add the remanent magnetization of the rotor magnet:
- magnetostatics += integral(Magnet, -1/mu* bremanent * curl(tf(a)));
- // Add the current density source js [A/m2] in the z direction in the stator windings.
- // A three-phased actuation is used. The currents are dephased by the mechanical angle
- // times the number of pole pairs. This gives a stator field rotating at synchronous speed.
- // Change the phase (degrees) to tune the electric angle:
- // double phase = 0;
- // parameter jsz;
- // jsz|winda = Imax/windarea * sin( (phase + 4.0*alpha - 0.0) * getpi()/180.0);
- // jsz|windb = Imax/windarea * sin( (phase + 4.0*alpha - 60.0) * getpi()/180.0);
- // jsz|windc = Imax/windarea * sin( (phase + 4.0*alpha - 120.0) * getpi()/180.0);
- // magnetostatics += integral(windings, -array3x1(0,0,jsz) * tf(a));
- magnetostatics += continuitycondition(StatorFace, MagnetFace, a, a, 1, false);
- // Rotor-stator continuity condition (including antiperiodicity settings with factor '-1'):
- // magnetostatics += continuitycondition(gammastat, gammarot, az, az, {0,0,0}, alpha, 45.0, -1.0);
- // Rotor and stator antiperiodicity condition:
- // magnetostatics += periodicitycondition(gamma1, gamma2, az, {0,0,0}, {0,0,45.0}, -1.0);
- solve(magnetostatics);
- // int Intersection = regionintersection({Stator, Magnet});
- // curl(a).write(all, "results/MagneticField"+std::to_string((int)alpha)+".vtu", 2);
- curl(a).write(All, "results/MagneticField.vtu", 2);
- return 0;
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- Mesher testmesh;
- int Stator = testmesh.add("models/Stator.msh");
- int Magnet = testmesh.add("models/Magnet45.msh");
- testmesh.load();
- testmesh.printphysicalregions();
- // testmesh.rotate (Magnet, 0, 0, 0);
- // testmesh.translate (Magnet, 0, 0, 2);
- testmesh.write("models/combined.msh");
- resolve(testmesh);
- SlepcFinalize();
- return 0;
- }
|