123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138 |
- // This code simulates the laminar, incompressible water flow past a step.
- //
- // A parabolic normal flow velocity is forced at the inlet and
- // a zero pressure is imposed at the outlet.
- //
- // More information for this standard example can be found in:
- //
- // "Finite element methods for the incompressible Navier-Stokes equations", A. Segal
- //
- // The step geometry is as follows:
- //
- // l2
- // <--------------------------------->
- // __________________________________
- // | /|\
- // l1 | |
- // <----------->| |
- // _____________| h2 \|/
- // /|\ OUTLET
- // |
- // INLET |
- // \|/ h1
- // ________________________________________________
- #include "sparselizardbase.h"
- using namespace mathop;
- // First four arguments give the geometry dimension, last four arguments give the mesh size:
- mesh createmesh(double l1, double h1, double l2, double h2, int nl1, int nl2, int nh1, int nh2);
- void sparselizard(void)
- {
- // Region numbers used in this simulation:
- int fluid = 1, inlet = 2, outlet = 3, skin = 4;
- // Height of the inlet [m]:
- double h1 = 1e-3;
- mesh mymesh = createmesh(2e-3, h1, 12e-3, 1e-3, 30, 150, 20, 50);
-
- // Define the fluid wall (not including the inlet and outlet):
- int wall = regionexclusion(skin, regionunion({inlet,outlet}));
- // Dynamic viscosity of water [Pa.s] and density [kg/m3]:
- double mu = 8.9e-4, rho = 1000;
- // Field v is the flow velocity. It uses nodal shape functions "h1" with two components.
- // Field p is the relative pressure. Fields x and y are the space coordinates.
- field v("h1xy"), p("h1"), x("x"), y("y");
- // Force the flow velocity to 0 on the wall:
- v.setconstraint(wall);
- // Set a 0 relative pressure at the outlet:
- p.setconstraint(outlet);
- // Use an order 1 interpolation for p and 2 for v on the fluid region (satisfies the BB condition):
- p.setorder(fluid, 1);
- v.setorder(fluid, 2);
- // Define the weak formulation for incompressible laminar flow:
- formulation laminarflow;
- laminarflow += integral(fluid, predefinednavierstokes(dof(v), tf(v), v, dof(p), tf(p), mu, rho, 0, 0) );
- // This loop with the above formulation is a Newton iteration:
- int index = 0; double convergence = 1, velocity = 0.1;
- while (convergence > 1e-10)
- {
- // Slowly increase the velocity for a high Reynolds (1 m/s flow, 1000 Reynolds still converges).
- if (velocity < 0.299)
- velocity = velocity + 0.008;
- std::cout << "Flow velocity: " << velocity << " m/s" << std::endl;
- // Force the flow velocity at the inlet (quadratic profile w.r.t. the y axis):
- v.setconstraint(inlet, array2x1(velocity*y*(h1-y)/pow(h1*0.5,2), 0));
- // Get a measure of the solution for convergence evaluation:
- double measuresol = norm(v).integrate(fluid,2);
- // Generate and solve the laminar flow problem then save to the fields:
- solve(laminarflow);
- convergence = std::abs((norm(v).integrate(fluid,2) - measuresol)/norm(v).integrate(fluid,2));
- std::cout << "Relative solution change: " << convergence << std::endl;
-
- // Write the fields to file. Write v with an order 2 interpolation.
- p.write(fluid, "p.vtk");
- v.write(fluid, "v.vtk", 2);
- index++;
- }
-
- // Compute the flow velocity norm at position (5,1,0) mm in space:
- double vnorm = norm(v).interpolate(fluid, {5e-3, 1e-3, 0.0})[0];
- // Output the input and output flowrate for a unit width:
- double flowratein = (normal(inlet)*v).integrate(inlet, 4);
- double flowrateout = -(normal(outlet)*v).integrate(outlet, 4);
- std::cout << std::endl << "Flowrate in/out for a unit width: " << flowratein << " / " << flowrateout << " m^3/s" << std::endl;
- // Code validation line. Can be removed.
- std::cout << (vnorm*flowrateout < 2.64489e-05 && vnorm*flowrateout > 2.64485e-05);
- }
- mesh createmesh(double l1, double h1, double l2, double h2, int nl1, int nl2, int nh1, int nh2)
- {
- int fluid = 1, inlet = 2, outlet = 3, skin = 4;
- shape qthinleft("quadrangle", fluid, {0,0,0, l1,0,0, l1,h1,0, 0,h1,0}, {nl1,nh1,nl1,nh1});
- shape qthinright("quadrangle", fluid, {l1,0,0, l1+l2,0,0, l1+l2,h1,0, l1,h1,0}, {nl2,nh1,nl2,nh1});
- shape qthick("quadrangle", fluid, {l1,h1,0, l1+l2,h1,0, l1+l2,h1+h2,0, l1,h1+h2,0}, {nl2,nh2,nl2,nh2});
- shape linlet = qthinleft.getsons()[3];
- linlet.setphysicalregion(inlet);
- shape loutlet = shape("union", outlet, {qthick.getsons()[1],qthinright.getsons()[1]});
- mesh mymesh;
- mymesh.regionskin(skin, fluid);
- mymesh.load({qthinleft,qthinright,qthick,linlet,loutlet});
- mymesh.write("pipestep.msh");
- return mymesh;
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|