12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091 |
- // This code simulates the electromagnetic wave propagation in a cross-shaped 2D
- // waveguide made of a perfect conductor. A time simulation is performed with
- // initial all-zero conditions.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The domain regions as defined in 'waveguide3D.geo':
- int left = 1, skin = 2, wholedomain = 3;
- mesh mymesh("waveguide2D.msh");
- // Edge shape functions 'hcurl' for the electric field E.
- // Fields x and y are the x and y coordinate fields.
- field E("hcurl"), x("x"), y("y");
- // Use interpolation order 2 on the whole domain:
- E.setorder(wholedomain, 2);
-
- // The cutoff frequency for a 0.2 m width is freq = 0.75 GHz in theory.
- // With this code and a fine enough mesh you will get the same value.
- double freq = 0.9e9, c = 3e8, pi = 3.14159;
-
- // The waveguide is a perfect conductor. We thus force all
- // tangential components of E to 0 on the waveguide skin.
- E.setconstraint(skin);
- // We force an electric field in the y direction on region 'left'
- // that is 0 on the exterior of 'left' and one sine period inside.
- // The electric field varies in time at frequency freq.
- E.setconstraint(left, sin(y/0.1*pi)* sin(2*pi*freq*t()) *array3x1(0,1,0));
- formulation maxwell;
-
- // This is the weak formulation for electromagnetic waves in time:
- maxwell += integral(wholedomain, -curl(dof(E))*curl(tf(E)) - 1/(c*c)*dtdt(dof(E))*tf(E));
-
- // Define the generalized alpha object to time-solve formulation 'maxwell'
- // with initial all zero solution vectors 'vec(maxwell)'.
- // The general system to solve in time is M*dtdtx + C*dtx + K*x = b.
- //
- // The last argument is a vector 'isconstant' telling if the:
- //
- // - excitation vector b is constant in time for isconstant[0]
- // - matrix K is constant in time for isconstant[1]
- // - matrix C is constant in time for isconstant[2]
- // - matrix M is constant in time for isconstant[3]
- //
- // You can set isconstant[0] to 'true' if in b only the constraints
- // are time dependent but the other excitation sources are not.
- //
- // Setting properly the 'isconstant' vector can give a dramatic speedup
- // since it may avoid reassembling or allow reusing the LU factorisation.
- //
- genalpha ga(maxwell, vec(maxwell), vec(maxwell), vec(maxwell), {true, true, true, true});
-
- // Run the generalized alpha time resolution from the time in the first argument
- // to the time in the third argument by timesteps given as second argument.
- // The last argument is optional (default is 1). When set to an integer 'n'
- // only one every n timesteps is added to the output vector.
- std::vector<vec> solvec = ga.runlinear(0, 0.05*1.0/freq, 20*1.0/freq, 2)[0];
-
- // Now save all data in the 'solvec' vector (which contains the solution at every nth timestep).
- for (int ts = 0; ts < solvec.size(); ts++)
- {
- std::cout << ts << " ";
- // Transfer the data to the electric field:
- E.setdata(wholedomain, solvec[ts]);
- // Write with an order 2 interpolation and with the name of your choice:
- E.write(wholedomain, "E"+std::to_string(ts+100)+".pos",2);
- }
-
- // Code validation line. Can be removed.
- std::cout << (solvec[solvec.size()-1].norm() < 0.675878 && solvec[solvec.size()-1].norm() > 0.675875);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|