1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- // This code simulates the steady-state electromagnetic waves in a cross-shaped
- // 2D waveguide made of a perfect conductor.
- #include "sparselizardbase.h"
- using namespace mathop;
- void sparselizard(void)
- {
- // The domain regions as defined in 'waveguide3D.geo':
- int left = 1, skin = 2, wholedomain = 3;
- mesh mymesh("waveguide2D.msh");
- // Edge shape functions 'hcurl' for the electric field E.
- // Fields x and y are the x and y coordinate fields.
- field E("hcurl"), x("x"), y("y");
- // Use interpolation order 2 on the whole domain:
- E.setorder(wholedomain, 2);
-
- // The cutoff frequency for a 0.2 m width is freq = 0.75 GHz in theory.
- // With this code and a fine enough mesh you will get the same value.
- double freq = 0.9e9, c = 3e8, pi = 3.14159, k = 2*pi*freq/c;
-
- // The waveguide is a perfect conductor. We thus force all
- // tangential components of E to 0 on the waveguide skin.
- E.setconstraint(skin);
- // We force an electric field in the y direction on region 'left'
- // that is 0 on the exterior of 'left' and one sine period inside.
- E.setconstraint(left, sin(y/0.1*pi)* array3x1(0,1,0));
- formulation maxwell;
-
- // This is the weak formulation for electromagnetic waves:
- maxwell += integral(wholedomain, -curl(dof(E))*curl(tf(E)) + k*k*dof(E)*tf(E));
-
- maxwell.generate();
- vec solE = solve(maxwell.A(), maxwell.b());
-
- E.setdata(wholedomain, solE);
- // Save the electric field E and magnetic field H with an order 2 interpolation:
- curl(E).write(wholedomain, "H.pos", 2);
- E.write(wholedomain, "E.pos", 2);
- // Code validation line. Can be removed.
- std::cout << (solE.norm() < 0.6826 && solE.norm() > 0.6825);
- }
- int main(void)
- {
- SlepcInitialize(0,{},0,0);
- sparselizard();
- SlepcFinalize();
- return 0;
- }
|