// This code gives the mechanical vibration eigenfrequencies and eigenmodes of a // 3D disk that is clamped at its outer face. #include "sparselizardbase.h" using namespace mathop; void sparselizard(void) { // The domain regions as defined in 'disk.geo': int vol = 1, sur = 2, top = 3; // The mesh can be curved! mesh mymesh("disk.msh"); // Nodal shape functions 'h1' with 3 components. // Field u is the membrane deflection. field u("h1xyz"); // Use interpolation order 3 on 'vol', the whole domain: u.setorder(vol, 3); // Clamp on surface 'sur' (i.e. 0 valued-Dirichlet conditions): u.setconstraint(sur); // E is Young's modulus. nu is Poisson's ratio. rho is the volumic mass. parameter E, nu, rho; E|vol = 150e9; nu|vol = 0.3; rho|vol = 2330; formulation elasticity; // The linear elasticity formulation is classical and thus predefined: elasticity += integral(vol, predefinedelasticity(dof(u), tf(u), E, nu)); // Add the inertia terms: elasticity += integral(vol, -rho*dtdt(dof(u))*tf(u)); elasticity.generate(); // Get the stiffness and mass matrix: mat K = elasticity.K(); mat M = elasticity.M(); // Remove the rows and columns corresponding to the 0 constraints: K.removeconstraints(); M.removeconstraints(); // Create the object to solve the generalized eigenvalue problem K*x = lambda*M*x : eigenvalue eig(K, M); // Compute the 10 eigenvalues closest to the target magnitude 0.0 (i.e. the 10 first ones): eig.compute(10, 0.0); // Print the eigenfrequencies: eig.printeigenfrequencies(); // The eigenvectors are real thus we only need the real part: std::vector myeigenvectors = eig.geteigenvectorrealpart(); // Loop on all eigenvectors found: for (int i = 0; i < myeigenvectors.size(); i++) { // Transfer the data from the ith eigenvector to field u: u.setdata(top, myeigenvectors[i]); // Write the deflection on the top surface of the membrane with an order 3 interpolation: u.write(top, "u"+std::to_string(i)+".pos", 3); } // Code validation line. Can be removed. std::cout << (eig.geteigenvaluerealpart()[0] < 6.25240e+06 && eig.geteigenvaluerealpart()[0] > 6.25235e+06); } int main(void) { SlepcInitialize(0,{},0,0); sparselizard(); SlepcFinalize(); return 0; }