// This code simulates the fluid-structure interaction between an incompressible water // flow in a microchannel and two micropillars. The micropillars are modeled as elastic // structures. Small-strain geometric nonlinearity is taken into account. // A monolithic fluid-structure coupling is used. A smooth mesh deformation is obtained // by solving a Laplace formulation. // ALE can be used as an alternative to solve this FSI problem. // // A parabolic normal flow velocity is forced at the inlet and // a zero pressure is imposed at the outlet. // // // The microchannel geometry is as follows (l = 350 um, h = 120 um): // // l // <------------------------------------------------------------------> // ________________________________ ________________________________ // | | // /|\ | | OUTLET // | | | // | | | // | __ | | // | | | PILLARS |__| // | | | // | | | // INLET | | | // \|/ h | | // _________________| |_______________________________________________ #include "sparselizardbase.h" using namespace mathop; void sparselizard(void) { // The domain regions as defined in 'fsimicropillar.geo': int fluid = 1, solid = 2, inlet = 3, outlet = 4, sides = 5, clamp = 6; // Load the mesh file (the mesh can be curved): mesh mymesh("fsimicropillar.msh"); // Define the fluid-structure interface: int fsinterface = regionintersection({fluid, solid}); // Confirm that the normal at the interface is pointing outwards to the pillars: normal(fsinterface).write(fsinterface, "normal.pos"); // Field v is the flow velocity. It uses nodal shape functions "h1" with two components in 2D. // Field p is the relative pressure. Field u is the mechanical deflection. Field umesh stores // the smoothed mesh deformation while field y is the y coordinate. field v("h1xy"), p("h1"), u("h1xy"), umesh("h1xy"), y("y"); // Force a no-slip (0 velocity) condition on the non-moving walls: v.setconstraint(sides); // Force the fluid flow at the fluid-structure interface to zero (no-slip condition for static simulation, dt(u) = 0): v.setconstraint(fsinterface); // Force a y-parabolic inflow velocity in the x direction at the inlet. // The channel height is h [m]. double h = 120e-6; v.setconstraint(inlet, array2x1( 0.03 * 4.0/(h*h)*y*(h-y), 0)); // Set a 0 relative pressure [Pa] at the outlet: p.setconstraint(outlet); // The pillars are clamped at their bottom side: u.setconstraint(clamp); // Use an order 1 interpolation for p and 2 for v on the fluid region (satisfies the BB condition). // Use order 2 for u on the solid region. p.setorder(fluid, 1); v.setorder(fluid, 2); u.setorder(solid, 2); umesh.setorder(fluid, 2); umesh.setorder(solid, 2); // Mesh deformation field umesh is forced to 0 on the fluid boundary, // to u on the solid and smoothed with a Laplace formulation in the fluid. umesh.setconstraint(regionunion({inlet,outlet,sides})); umesh.setconstraint(solid, u); // Classical Laplace formulation for each component: formulation laplacian; laplacian += integral(fluid, grad(dof(compx(umesh)))*grad(tf(compx(umesh))) + grad(dof(compy(umesh)))*grad(tf(compy(umesh))) ); // This is needed to add the degrees of freedom in the solid region to the formulation: laplacian += integral(solid, dof(umesh)*tf(umesh) ); // Dynamic viscosity of water [Pa.s] and density [kg/m3]: double mu = 8.9e-4, rhof = 1000; // Mechanical properties. Young's modulus E [Pa], Poisson's ratio nu [] and the density rho [kg/m3]: double E = 1e6, nu = 0.3, rhos = 2000; // Define the weak formulation for the fluid-structure interaction: formulation fsi; // Classical elasticity with small-strain geometric nonlinearity (obtained with the extra u argument). Update argument 0.0 to add prestress. fsi += integral(solid, predefinedelasticity(dof(u), tf(u), u, E, nu, 0.0, "planestrain")); // Define the weak formulation for time-independent incompressible laminar flow (on the mesh deformed by 'umesh'): fsi += integral(fluid, umesh, predefinednavierstokes(dof(v), tf(v), v, dof(p), tf(p), mu, rhof, 0, 0, false) ); // Add the hydrodynamic load pI - mu*( grad(v) + transpose(grad(v)) ) normal to the FSI interface (on the mesh deformed by 'umesh'). // The gradient in the viscous force term has to be evaluated on the fluid elements (here with a call to 'on'). fsi += integral(fsinterface, umesh, ( p * -normal(fsinterface) - on(fluid, mu*( grad(v) + transpose(grad(v)) ) ) * -normal(fsinterface) ) * tf(u) ); double uprev, umax = 1; while (std::abs(umax-uprev)/std::abs(umax) > 1e-6) { // Solve the fluid-structure interaction and the Laplace formulation to smooth the mesh. // The fields are updated in each 'solve' call. solve(fsi); solve(laplacian); // Output the max pillar deflection: uprev = umax; umax = norm(u).max(solid, 5)[0]; std::cout << "Max pillar deflection (relative change): " << umax*1e6 << " um (" << std::abs(umax-uprev)/std::abs(umax) << ")" << std::endl; } // Write the fields to ParaView .vtk format: u.write(solid, "u.vtk", 2); // Write v on the deformed mesh: v.write(fluid, umesh, "v.vtk", 2); // Code validation line. Can be removed. std::cout << (umax < 8.3835e-06 && umax > 8.3833e-06); } int main(void) { SlepcInitialize(0,{},0,0); sparselizard(); SlepcFinalize(); return 0; }